ICAT'98 \3;“

Development of R-Cubed Manipulation Language
— The specification of RCML and RCTP -

Wei-Chung Teng*, Akira Nukuzuma**, Naoki Kawakami*, Yasuyuki Yanagida*,
and Susumu Tachi*

*School of Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 JAPAN
{waldo, yanagida, kawakami, tachi} @star.t.u-tokyo.ac.jp
**Takatsuki Laboratory, Minolta Co. Ltd.
1-2,Sakura-Machi,takatscki-Shi, Osaka, 569-8503 JAPAN
nuu@-eie.minolta.co.jp

Abstract

R-Cubed (R*: Real-time Remote Robotics) is the concept
and technology which attempts to provide a solution for
people to telexist anywhere in the world by controliing
remote robots as his avatars in real time base through the
network. An R-Cubed system is supposed to allow
people to control remote robots from terminals installed
on homes, offices. or any public booths connected to
Internet or other dedicated networks. When constructing
an R-Cubed system, topics involved include the
mechanism to model and construct interactive remote
environment virtually, the manipulating interface
selection discipline which depends on the characteristics
of remote robots, and the network protocol for real-time
communications between user side and robot side. In this
paper some efforts devoted to the design of R-Cubed
system are shown, including the specification of RCML.
(R-Cubed Manipulation Language) which describes
remote environments and robot characteristics, and
RCTP (R-Cubed Transfer Protocol) which is in charge of
network communication between users and robots in real
time base. An implementation example using mobile
robot is also introduced.

Key words: Tele-existence, R-Cubed, RCML. R(TP,
VRML

1. Introduction

The concept of telexistence (tele-existence) is proposed
in 1980. It allows human, if emancipated from the
restrictions of time and space, to “exist” in a location
other than he/she really exists, or a virtual space. R-
Cubed [1], stands for Real-time Remote Robotics, is
proposed in 1995 as a project which try to construct a
society that everyone can freely telexist through a
network. That is , networked telexistence [2]. The
execution image of R-Cubed system varies from
controlling humanoids which have sensors equipped to
provide sensory information, by dedicated devices like

master manipulators and head-mounted display (HMD).
to the low end systems by which users can control remote
movable camera by a personal computer. In the
meaniime real-time data transfer channel is employed to
provide a basis for users and robots to communicate with
each other. That is because only with real-time response
can human retains the sensation of presence [3].

In this research we try to provide a solution to the
problems one would have to face when implementing a
R-Cubed system on low end systems:

¢ A modeling mechanism that can describe a three
dimension world, both in shapes and actions
available for objects inside the world. The models
would be used when users are immersed in virtual
spaces or as an assistance when the robots can not
provide enough sensory information.

¢ Standardization on the method in handling various
user-interface devices and various controllable
robot mechanisms, as to make sure they can
cooperate in any possible combination. So are the
sensors on robots and display devices installed in
terminals.

e A network transfer protocol that provides real-time
communication.

To overcome these problems, we propose a new
description language RCML (R-Cubed Manipulation
Language) and a protocol R-Cubed Transfer Protocol
(RCTP). with their specifications be introduced in
paragraphs below.

1.1 Related Works
1.1.1 VRML

Since the VRML 1.0 standard was specified in 1994, the
use of VRML has become the most popular way to
construct and access virtual worlds. VRML 2.0 provide
the mechanism on designing and handling the actions of
objects, and has become an ISO standard known as

—I156—

VRML97 [4]. This provides the users stable circum-
stances to access a number of virtual worlds.

However, even we can simulate the real world by writing
VRML scripts, it’s difficult to simulate ourselves, i.e.,
the avatar in virtual world. In VRML the shape of avatar
is restricted as a cube, with 2D or 3D pointer the only
interface to interact with the world. By the way, although
some implementations show the possibility on
controlling virtual robot modeled with VRML [5], a
standard way to model controllable mechanism and
sensory information is still necessary for various types of
robots.

1.1.2 Controlling Robots via WWW Browser

On the other hand, several projects on controlling actual
robots or robot arms over ISDN and/or Internet are
reported, with some of them opened to the Internet [6.7].
In general, the “Internet controlled robots™ are based on
Hyper-Text Markup Language (HTML) and Hyper Text
Transfer Protocol (HTTP) standards. This kind of
approach has the advantage that users can control robots
by using general WWW browser. However, there are
some implied problems remain:

e The types of user interface arc limited to those
supported by HTML language, i.e., the conventional
graphical user interface (GUI). And HTML does not
provide a standard way for other input/output devices
such as three dimensional position/orientation
sensors, which are more intuitive way to control the
robots.

s Using HTML, the information exchanged over the
network is treated as symbolic information attached
to correspondent GUI manipulation, rather than
control information itself. This is not suitable for
continuously controlling robots by specifying
numerical parameters such as hand position, head
orientation, etc., though it may be sufficient for
controlling robots by symbolic commands.

e The HTTP protocol is not designed for real-time
transference.

The problems exist as long as the system is constructed
based on HTML and HTTP, and any effort that try to
decrease or eliminate these disadvantages within the
frame of existent language and protocol may result in
constrained, not intuitive systems.

2. Basic Concepts

On implementation of the RCML/RCTP system. the
following concepts and definitions apply.

2.1 Server/Client Architecture

The RCML/RCTP system is of client/server architecture.
Server stands for the controlling system software running
at the robot site, and client stands for the software
running at the user's computer.

2.2 Objects

The concept of object is introduced here to define the
functional input/output units on the system. According to
their functionality, the objects is grouped into three
categories: system object, input object, and output object.

System objects include server object and client object,
which refer to, in respective, the server and client’s
computer hardware and the RCML/RCTP software
running above it, in the base that only one client can
control the robot at a time. Where input object and
output object mean the functional input and output unit
for sending and receiving commands, data and messages
between the information space created by computer, and
the real world. For example, digital camera is an input
object, where a monitor belongs to output object. It
should be noted that it is not the device itself to be
considered as a object, but the functional unit to be. So &
force display equipped with 3D position sensors is an
output object and at the same time an input object.

Input/output objects can still be classified into five types
according to the character of data they handle: video
input/output object, audio input/output object, control
input/output object, text input/output object, and binary
input/output object. Video input objects are used to get
live video stream, and audio input objects are dedicated
to live audio stream. Control input objects are used to get
control data of various degrees-of-freedom, such as 6
DOF position/orientation sensors, 2D or 3D mice, and so
on. Text and binary input objects are for arbitrary kinds
of symbolic information, in text form and binary form
respectively. An example of text input/output object is a
command string used by command-based robot control.
Each type of output object is the counterpart of
corresponding type of input objects.

Table 1. Objects in RCML/RCTP system

System Object Input Object Output Object

Server Video Input Video Output

Client Audio Input Audio Output
Control Input Control Output
Text Input Text Output
Binary Input Binary Output

2.3 Input and Output Devices

The input and output devices, both in user site and robot
site, are the actual interfaces which intermediate the real
world and the information space. There are three ways to
implement devices:

e Hardware implementation
¢ GUI implementation
e Virtual implementation.

Hardware implementation refers to physical devices like
mouse or joystick. GUI implementation means graphic
interfaces like scroll bar, button, efc. And virtual
implementation should be applied to simulated virtual

—157—

devices when users tele-exist in virtual spaces.

2.4 Translators

To design RCML/RCTP system to be applicable for
various types of robots and devices, the way data
transferred over the network must be standardized and be
independent of the robots and/or devices connected at
each site. To satisfy this requirement, software modules
called translators are provided to translate the specific-
format data into the standard format and vice versa. For
example, the data returned from some 6 DOF position
sensor may contain 6 degrees for 6 joint respectivelv. By
input translator it is converted into standard format.
coordinate in Cartesian coordinate system, and
transferred into the other site. This coordinate would then
converted again to suite the specific output device in the
opposite site. For another example on sensory
information, the live video stream took from robot’s
camera would be at first encoded into some standard
format and send out by network, and then video plaver
program in the user’s site would translate this format and
show it on the screen, no matter of normal display or
some HMD.

Translator is independent of physical device, nor is
translator equal to unit of program. A good example is
the output translator for video stream in last paragraph:
it includes the standard format translator and the display
driver bound to the display device.

Server (Robot) Site <1 Client (User) Site

Input Input Dutput OutDUl
Device ‘rranslator Translator Device

Oulput Object
Network Operator

Input Inpu
Translator DGVICS

lnput Oblect

Remote Input Object

Environment

—— S
Output QOutput
Device |[*|Translator

N~
Qutput Object ‘\

one-to-one mapping

Fig.1 Functional Units and Information Flow in The
RCML/RCTP System

3. RCML

3.1 Purpose

The R-Cubed Manipulation Language is designed as a
file format for describing real world or virtual spaces ar.d
for robot characteristics such as degrees of freedom,
control parameters, and sensor information. RCML
should fulfill the following requirement:

3.2 Design Criteria
RCML has been designed to fulfill the following

requirements:

e Consistency: the description methods and accessing
mechanisms should be the same for both real and
virtual worlds. Users control the remote robots in the
same manner no matter in real worlds or in virtual
spaces.

¢ Compatibility: RCML should be compatible and, if
possible, be transparent to existent standard.

e Uniformity: there should has an universal way to
describe all kinds of input/output devices so that they
can be treated in the same way.

e Portability: RCML should not define or assume any
special function or characteristic depending on any
particular operating platform.

3.3 Design Strategy

In recent years, VRML has become a universal standard
for describing virtual world. The latest specification
VRML97 indeed provides a standard and popular way to
construct interactive three-dimensional objects and
virtual worlds. So we consider it adequate to adopt
VRML97 as the base format to describe remote
environments, controlled robots themselves, and robot
characteristics.

In fact, RCML is designed to be grammatically
compatible with VRML97. And for the robot related
part, we fortunately have VRML be designed flexibly
such that it could be extended easily. By describing the
robot related information in the form of VRML extension
node, PROTO node, RCML retains the transparency to
VRML. That is to say, any legal RCML file would also
be translated correctly by VRML browser, with RCML-
related part neglected. So users who have only VRML
browser installed can still access RCML files and browse
around inside the virtual worlds.

3.4 Node Structure

A typical RCML file should include two parts: a virtual
world, which is the “copy” of real remote world, written
as normal VRML files, and a RCML-defined PROTO
node containing control parameters and sensory
information description.

The structure of RCML extension nodes are constructed
in the same way with objects. It contains 3 level with the
RCML_Robot grouping node as the “root” node. System
object nodes and Input / Output object nodes are
contained in RCML_Robot and stand for system objects
and Input / Output objects respectively. Control objects
are classified furthermore into small unit
RCML_ControllnputData or RCML_ControlOutputData
nodes. Table 2 lists all kinds of nodes and shows their
relationship.

—158—

Table 2. List of Nodes in RCML

Level | Node RCML Robot
System RCML_Server
Object RCML_Client
Node
Input RCML_Videolnput
Object RCML_Audiolnput
Level 2 | Node RCML_Controllnput

Node RCML_TextInput
RCML Binarylnput
Output RCML _VideoOutput
Object RCML_AudioOutput
Node RCML_ControlOutput
RCML_TextOutput
RCML BinaryOutput

RCML _
Control
Level 3 | Input Node
Node | RCML_
Control
Output Node

RCML_ControllnputData

RCML_ControlOutputData

3.4.1 The RCML_Robot Node

RCML Robot node includes all level 2 nodes as
parameters. A example for RCML_Robot is as below:

RCML Robot {

field SFNode Rcmi _Controllnput { ... }
field SFNode Reml ControlOutput { ... }
field SFNode RCML_Videolnput { ... }

}
3.4.2 The RCML_System and RCML_Client Node

The RCML_Server node contains information about the
server's system, with the definition as:

PROTO RCML_Server [
field SFString language "RCML /1.0"
field SFString os "
field SFString serversoft ""
1{
Script {
field SFString language IS language
field SFString os IS os
field SFString serversoft IS serversoft
url "
}
3

The language field specify the version of RCML
supported by this server. The names of OS and software
are specified in os and serversoft field respectively. And
the url stores the URL of RCTP server. RCML_Client
node is defined in the same way, so we omit its
explanation here.

3.4.3 The RCML_Videolnput and RCML_Audio-
Input Node

PROTO RCML Videolnput [
field SFString name "
field SFString translator ""
field SFInt32 channel 1
field SFInt32 xsize 0
field SFInt32 ysize 0
field SFInt32 color 0
field SFFloat samplerate 0
1
Script {
field SFString name IS name
field SFString translator IS translator
field SFInt32 channel IS channel
field SFInt32 xsize IS xsize
field SFInt32 ysize IS ysize
field SFInt32 color IS color
field SFFloat samplerate IS samplerate
url "
}

H

The RCML Videolnput node specifies parameters for
controlling the video input device. The name is intended
to store the name of the video input device. The
translator specifies the name of Input translator program.
The channel field is intended to store the number of the
channel. A value of 1 means the video input is a normal
one like CCD camera, and 2 indicates stereo video input.
The xsize field and the ysize field are intended to store
the video resolution in pixel. The color field is the
number of colors on the input, with unit as bit. The
samplerate field is, as what he say, the video sample rate
(Hz). A sample rate of 0 means still image, or a picture.
Finaliy the ur/ field is intended to store the URL for the
server of the video input device.

RCML_Audiolnput node has a similar definition and is
omitted here.

3.4.4 The RCML_Controllnput and RCML_Control-
InputData Node

The RCML_Controllnput and RCML_ControllnputData
may be the most important input object nodes.
RCML_ControlinputData describes the control
parameters of robot’s every input object, one by one;
And RCML_Controllnput groups them together.

PROTO RCML_ControllnputData |
field SFString name "
field SFInt32 value type float_type
field MFVec2f ralue range 01.0
field MFFloat range scale 1.0
field SFInt32 control type h_scroll
14
Script {
field SFString name IS name
field SFInt32 value_type IS value type

—159—

field MFVec2f ralue range IS ralue range
field MFFloat range scale IS range scale
field SFInt32 control_type IS control_type
url "nee

}
}

The name field is intended to store the name of the robot
control input. The value type field specifies the type of
the input object, with default value as "float_type". The
value_range field is intended to store the range of the
parameter. The range scale field is intended to store the
size of the range. The control type field is used when the
input object is some kind of GUI. The url/ field is
intended to store the data object server URL of the
control input object. An example for a horizontal scroll
bar to control a camera’s pan movement is showed here:

RCML_ControllnputData {

name "pan_move"
value_type float_type
value_range -1.57 1.57
control_type h_scroll

}

As for the RCML_Controllnput node, it defines some
global controll parameters and may contain numbers of
RCML ControllnputData nodes.

RCML_Controllnput §
field SFInt32 time stamp size 0
field SFString time_unit 10ms

field SFBool data_mask FALSE
field SFint32 command mode Time Driven
field SFBool control_lock FALSE

field MFInt32 command interval -1 0
And any number of:
field SFNode Reml_ControlinputData

}

RCML_Controllnput cooperates with RCTP and defines
the number of parameters to be sent, the time intervals
for sending data, efc. The detail will be introduced in
RCTP section.

The time stamp_size field is intended to store the size of
the command time stamp, and the allowed values are 0,
2,4 . 6, or 8 (bytes). Its default value 0 implies that no
time stamp is included in the command packets. The
time_unit stores the unit of time stamp. The data_mask
field determines whether the system uses fixed or
variable length format when sending command packets.
Its default value FALSE means variable length data
format.

The command mode field represents the command
issuing strategy for the client program. Its default value
Time_Driven means that commands are sent in time
driven mode. The control_lock field determines whether
permission of the server is needed to send next

command. If its value is FALSE, the client can send next
command without permission of the server. When system
is in time driven mode, the values in command_interval
field indicate the minimum and maximum time interval
in millisecond between adjacent command to be sent.
“command _interval 10 100” means that the next
command should be sent in a period of 10msec and
100msec after current command be sent. If server does
not receive any command after the maximum interval of
time passed, it is considered that the connection is
terminated. If one of the two values in the
command _interval field holds negative value, the
command is not sent. The maximum interval must be
grater than or equal to the minimum interval, or the result
is not defined.

3.4.5 The RCML_TextInput and RCML_Binary-
Input Node

The RCML_Textlnput node specifies text input
parameters to control a robot. This node has the same
name and translator parameters defined as in
RCML_Videolnput.

PROTO RCML_Textlnput [
field SFString name "
field SFString translator ""
14
Script {
field SFString name IS name
tield SFString translator IS translator
url "
}
)

RCML_Binarylnput node is defined in the same way
with RCML_TextInput and is not showed here.

Output object nodes are Input object nodes’ counterpart,

and are defined in almost the same way as Input object

nodes do. The detail of their description can be found on
http://www star.t.u-tokyo.ac.jp/projects/RCML.

Finally some aliases used in the definition above are
arranged in the table below:

Table 3. Aliases and their meanings

Name of Alias | Value | Meaning

float type 0 The float type

integer _type 1 The integer type

bool_type 2 The Boolean type

h_scroll 0 The horizontal scroll bar

v_scroll 1 The vertical scroll bar

Time Driven 0 The command is issued at
constant interval

Event Driven 1 The command is issued
when a user command is
revised

—160—

4. RCTP
4.1 Purpose

RCTP is designed to cooperate with RCML. The two
main jobs for RCTP are to negotiate for assigning
effective pairs of input/output devices in robot and user
sites, and to transfer the control commands from user and
status information from robot in real-time.

4.2 Scenario of RCTP Connection

The process of a RCTP connection is divided into 3
phases. In the beginning the users access some Web
pages describing the information of controllable robots,
and then download the RCML file. RCML browser is
invoked at this time to parse the RCML file. This part is
called the greeting phase. Computers that have no
RCML browser installed may act as if a VRML file is
download and invoke the VRML browser.

After the user picks out the controlling objects and
decides the corresponding input device, RCML browser
would try to build a network connection with RCML
server. After connection is established, RCML browser
would request to get the control permission of robot’s
objects. If the requested device is free and functions well,
server will assign a unique ID number to the device and
acknowledge it back with all initial characteristic values
appended. All this process should follow the
specification of HTTP/1.1, and the part is called the
negotiation phase. 1If negotiation phase completes
smoothly, RCML browser would send the GO method in
order to start the controlling phase. Control messages and
system information transferred in this phase are binary
based and contrived to meet the real-time needs,
however the Video/Audio and other Sensory information
are left to dedicated protocols. This phase is call as Live
Session Phase. Figure 2 shows the whole process of a
RCTP connection:

Greeting ™ GeT - TN

RCMIL Browser WWW Seprver

Phase o « CTile + Tran<Thitor e
e B dile

Negotiation y
Y ASSIGN w T

Phase RCMI Browser [PIRCNM L, Server
J Tt aTeeor

Binary mode (o Binary mode

L\ v

{ >
Phase RCML Browser [Z PIRCM L Server
e J

T aTAR Tfarmation J

Live Session N

Control messa

Fig.2 Scenario of RCTP Connection

4.3 Phases in RCTP

The process of a RCTP connection is divided into the
following three phases which correspond to their
functionality.

4.3.1Greeting Phase

In this phase users access URL of RCML file, download
the file and relative translator modules which may be
written by Java language. All these jobs can be done by a
WWW browser, so this phase has no relation to RCTP in
technical.

4.3.2 Negotiation Phase

The negotiation phase happens when users want to
control remote robots. When the client requests for
connection, the server checks if other client is controlling
the robot. Because only one client is allowed to control
the robot at a time, server may refuse to the control
request by a server busy message. However, users can
still request for sensory information for a robot
controlled by other user. In this phase, the client assigns
controllable objects at the remote site with the available
devices, as well as assigning remote sensory information
channel with the local output devices. For example, if the
server site has a Control Output object with 6 DOF, the
client may attempt to assign a Control Input object with 6
DOF. This assignment procedure may be regarded as
“making the pair of input and output objects”.

Since HTTP plays a good role in negotiation and
querying, the format used in negotiation phase follows
the HTTP/1.1 specification [8], with two RCTP extended
methods are employed here though. The ASSIGN
method request for control permission for one object of
remote robot, and the GO method is sent when
negotiation ends smoothly so that the system can switch
over into the next phase. Example is given below:

(Client) ASSIGN head RCTP/1.0
CRLF

(Server) 201 OK
ID: |
Current Value: 30.0 10.0 5.0
CRLF

(Client) ASSIGN arm RCTP/1.0
CRLF

-+ (the ASSIGN method is repeated)

(Client) GO RCTP/1.0

(Server) 201 OK

(now starts the live session phase)

4.3.3 Live Session Phase

Data transferred through the network can be categorized
according to the object type they belong to. Because
technique for live video/audio broadcasting have been
developed for several years and obtained remarkable
improvement, transfer protocols to video and audio
objects are open to the existent ones. As for control
objects, a compact format is used for network packet.

In general situation multiple control input/output object
pairs exist and share the same parameter recorded in
RCML_Controlinput and RCML_ControlOutput nodes,

—161—

such as time unit and commend interval. So it gives us a
good reason to collect all commands from control input
objects together at the same packet when we send them
to the server. The same technique applies on data from
Text and binary output, which may be in charge of
reporting the status of robots. Detail of the packet
structure is showed as figure 3.

Command whose data

length is pre-defined
Translator Level

Command whosc data

fength is variable

|

Prepending source
D

y

Col\\nmndl Time r Data cmity ’

Loption)

1
l(‘mlmmnd ’ me | Length r Data I Data
Laplion) of data -

Source IDT Command/Data]

y . Multiplexing and > y

Commaunication pleving Number ofICmnmand/Dnl Command’Da

Manager prepending number d: 1 2

Level o
of commtnds
Prepending number Sizc of | Number nl‘I(‘onnnﬂnd/Dal Command/Dat
ol'commjnds packels d Il 2

Scnding to network

Fig.3 Multiple Layer Packet Formation

Another characteristic on the format of packet is the
usage of data mask. Definition of Control object message
can be written in BNF as:

Control = ObjectlD [TimeStamp] [DataMask]
ControlData

ObjectID = OCTET

TimeStamp = 4OCTET

DataMask = *OCTET

ControlData = 1*OCTET

ObjectlD is the ID number assigned in negotiation phase,
and TimeStamp is the time stamp representing the length
of time period after the live session starts. TimeStamp is
an optional field and would not be used if the value of
time_stamp_size field in RCML Controllnput node is 0.

DataMask is an array of flags showing if the
corresponding parameter be sent, with each parameter a
bit. The unit of DataMask is byte, and the length will be
the round off after dividing number of parameters by 8.
So if there are 14 parameter in a object, the DataMask
for that object would be 2 bytes. Data mask is used if the
value of datamask field in RCML_ControlData node is
TRUE.

Now consider controlling a 13 DOF robot arm with data
mask used. If user change the angles of the 2nd and 7th
articulation, the command sent to server is as below:

Control = ObjectID 0x0042 ControlData2 ControlData7

Size of packet is considered shorten by using data mask
in multi-parameter control objects.

Finally ControlData means the set of parameters for that
ControlData object.

5. Implementation example

An implementation based on RCML/RCTP specification
is constructed and will be shown in the conference as a
demo. The following is specification of the demo system:

¢ System architecture: Client/Server architecture.
¢ Hardware and computer OS:
e Server: Toshiba Libretto 60 with Windows NT
Workstation 4.0 installed
e Client: IBM/PC AT compatible with Window
95/98 installed
e Robot: the Minolta robot
¢ Development environment:
¢ Server: Microsoft Visual C++ 4.0 or above
e Client: DK 1.1.6 and Visual C++ 4.0
e Helper programs:
¢ Video player: CU-SeeMe v1.0
e VRML Browser: Sony Community Place Browser
2.0

6. Conclusion

In this paper the overview of RCML and RCTP is stated.
RCML and RCTP are designed to mutually cooperate in
order to implement an low end and general purposed R-
Cubed system, with basic concepts like translator and
object be introduced.

Another characteristic of RCML and RCTP is the
compatibility to the existent language and protocol.
RCML is designed in the base of VRML97, and RCTP
extends HTML/1.1 as the standard format in negotiation
phase.

Finally, the complete specification can be refer by the
following URL:

http://www.star.t.u-tokyo.ac.jp/projects/RCML

References

1. MITI of Japan, R-Cubed WG ed.: “R-Cubed”.
Nikkan Kogyo Shimbun (1996)

2. S. Tachi, Real-time Remote Robotics — Toward
Networked Telexistence, IEEE Computer Graphics
and Applications (1998), pp. 6-9.

3. Y. Yanagida, N. Kawakami, and S. Tachi,
Development of R-Cubed Manipulation Language -
Access Real Worlds Over the Network, The 7th
Internaional Conference on Artificial Reality and
Tele-existence (1997), pp.159-164.

4. http://www.vrml.org/Specifications’'VRML97

5. http://www.robotic.dlr.de/STUDENTS/Martin.Rohr
meier/robot/robot.html

6. http://www.usc.edu/dept/raiders/story/index.html

7. http://www.cs.cmu.edu/~xavier/

8. Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Berners-Lee, T., “Hypertext Transfer Protocol --
HTTP/1.17, RFC 2068, UC Irvine, Digital
Equipment Corporation, M.I.T., January, 1997.

—162—

