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Abstract

In this paper, a method to control the tip position of a
manipulator with passive joints, which have no actuators,
in an operational coordinate space is presented. The
equations of motion are described in terms of operational
coordinates. The coordinates are separated into controlled
coordinates and compensating coordinates. The
accelerations of the controlled coordinates can be
arbitrarily adjusted by using dynamic coupling of the
manipulator. The effectivéness of the method is verified
by experiments using a two-degree-of-freedom
manipulator with a passive joint. The experiments show
that the controlled coordinates of the position of the
manipulator can be controlled precisely by use of the
proposed method.

1. Introduction

The number of degrees of freedom of a conventional
manipulator is equal to the number of joint actuators.
Since the mass of the actuator of a serial type
manipulator is a load for the next actuator, the size of the
actuator should increase rapidly from the wrist joint to the
base joint. As a result, the base joint must be equipped
with a huge actuator compared to the load of the
manipulator. In order to decrease the weight, cost and
energy consumption of a manipulator, various methods
have been proposed for controlling a manipulator which
has more degrees of freedom than actuators [1]. However,
these methods require special mechanisms (e.g. drive
chains, drive shafts, transmission mechanisms) in
addition to the basic links and joints. In this paper, a
method for controlling a manipulator which has more
joints than actuators without using additional
mechanisms is presented.

The dynamics of a manipulator has non-linear and
coupling characteristics. When each joint is controlled by
a local linear feedback loop, these factors result in
disturbance. The elimination of such dynamic
disturbances has been one of the major problems in the
control of a manipulator [2-6]. A design theory for a
manipulator arm which has neither non-linearity nor
dynamic coupling has also been proposed [7]. However,
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the effects of these disturbances are available to drive a
joint which in itself does not have an actuator. It is
observed that the dynamic characteristics are actively used
in human handling tasks. For example, when a heavy
load is handled, the human wrist joint is not forced but
kept free and the inertia of the load is utilized effectively.
Such a "dynamic skill” will also be significant for robot
control.

A synergetic control scheme has been proposed for
control of a system including unpowered degrees of
freedom [8]. In this scheme, the states and generalized
forces of the system are partially programmed, and
unknown states and unknown generalized forces are
determined by the conditions of dynamic equilibrium.
This method was applied to synthesis of biped gait and
biped postural stabilization. In the biped system, the
degrees of freedom between the foot and the ground are
unpowered, and they are controlled indirectly using the
dynamic coupling with other powered degrees of freedom.

As a means of controlling a manipulator which has
more joints than actuators without additional
mechanisms, we have proposed a method of controlling
passive joints by using dynamic coupling [9]. We also
developed an algorithm for point to point control of the
manipulator and applied it to a two-degree-of-freedom
manipulator [10]. In this method, a manipulator is
composed of two types of joints, active joints and passive
joints. Each active joint comprises an actuator and a
position sensor (e.g. an encoder). Each passive joint
comprises a holding brake and a position sensor. When
the brakes of the passive joints are engaged, the active
joints can be controlled without affecting the state of the
passive joints. When the brakes are released, the passive
joints can rotate freely. The motion of the active joints
generates accelerations of the passive joints through the
effect of the coupling characteristics of manipulator
dynamics. The passive joints can be controlled indirectly
by using this effect. The total position of the
manipulator is controlled by combining these two control
modes.

When some joint actuators of a manipulator are
exchanged for holding brakes with this method, we can
build a light-weight, energy-saving and low-cost
manipulator. We can take advantage of these merits by
applying it to simple assembly robots, control of



redundant manipulators, etc. Space applications (e.g.
space manipulators, expansion of space structures) may
also be effective.

The control with the passive joints released is an
essential part of this method. In [9,10], we controlled the
manipulator in joint coordinate space. It means that a
desired trajectory is assigned to the passive joints and the
motion and torque of the active joints is calculated to
realize the desired motion of the passive joints. The
motion of the active joints is determined by the desired
trajectory of the passive joints and the dynamic coupling
among the joints. Therefore the motion of the tip of the
manipulator cannot be prescribed. However, the position
of the tip in an operational coordinate space, e.g.
Cartesian coordinate space, is usually important in
practical tasks of the manipulator. In this paper, we
propose a method to control the position of a manipulator
with passive joints not in joint coordinate space but in an
operational coordinate space. In this method, the
equations of motion are represented in terms of
operational coordinates. The desired accelerations can be
generated at the controlled coordinates of the same number
as the active joints by using dynamic coupling among the
coordinates. The feasibility of the proposed method is
experimentally verified by a two-degree-of-freedom
manipulator. ‘

2. Joint Coordinate Space Control

This section is a review of the scheme for
controlling a manipulator with passive joints in joint
coordinate space and an algorithm for point to point
control, proposed in [9,10]. :

2.1 Control of Passive Joints

A manipulator with » degrees of freedom is
considered. The equations of motion of the manipulator
can be written as follows

M(@)d + b(q.4) =u 0y
where,
b(q.9) = h(q.4) + I'q + g(q)
qe R” : joint angle vector
ue R” : joint torque vector
g(q) € R” ! gravity torque vector
h(q.q) € R" : Coriolis and centrifugal torque vector
M(q) € R™” : inertia matrix
F'e R™"  : viscosity friction matrix

We assume that r (r > n/2) degrees of freedom of the
manipulator are active joints. The n-r degrees of freedom
are passive joints which have holding brakes instead of
actuators.
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The angles of r joints, including all the n-r passive
joints, are selected from the components of q and set as a
vector y € R” (since r > n/2, r > n-r). When r > n-r, v
is composed of the angles of the n-r passive joints and
those of the 2r-n active joints. When r = n-r, all the joints
represented by y are passive. In addition, all the
remaining n-r joints are active and their angles are
represented as ¢ € R, The torque of the r active joints
is expressed as T € R”. When the passive joints are free,
the torque of the passive joints is equal to zero. The
components of q and u are then rearranged as

5 M O H e

Accordingly, M(q) and b(q.q) are also rearranged and

partitioned as follows
n-r r
_[Mi11(q) M12(q)] -~
M@ = [M21(q) Mzz(q)]n-f
bi(q,
ba) = [ 49 ®

When (2) and (3) are substituted for (1) we obtain

Mi1¢+ M2y +by =1
M210+ M2y +by =0

(“4a)
(ab)

We assume that the dynamic model of the manipulator is
exactly known. M1, Mys, M21,M22, b and by can
be calculated from the dynamic model if the measured
value of the joint angle and velocity at each joint is
substituted in q and ¢ of (3). Furthermore, when desired
values Jq are assigned to the acceleration i, (4b) is
considered as a linear equation with regard to ¢. The
coefficient matrix My corresponds to the dynamic

coupling between ¢ and the torque of the passive joints.

If M3 is non-singular, (4b) can be solved uniquely forifs
as ;

¢ =-Ma ! Maoyq - M2 lby  (5)
When (5) is substituted in (4a) we obtain
T =M1z - M1 1M1 1Mpo) g
+b1 -M11M2;1by ©
If we apply this torque 7 to the active Joints, the resulting

acceleration will be ¢ and Vq.

The open-loop control of (6) is sensitive to
disturbances and modelling errors. In order to cause the
angle and velocity of the passive joint to follow desired
values, the following PID feedback control is applied



Va= Va + Kv(Wa¥) + Kp(ya-¥) + Kif(ya-y)dt
(Kv.Kp K; : diagonal gain matrix) @

Here W4, q and g are the desired values of angles,
velocities and accelerations and y and \ are the measured
values of angles and velocities. Accelerations Va
obtained in (7) is substituted in {q of (6) and the torque T
is determined.

2.2 Point-to-Point Control

When the holding brakes are engaged(ON), the
active joints can be controlled without affecting the state
of the passive joints. When the holding brakes are
released(OFF), the passive joints can move freely and are
controlled indirectly by the coupling torque. The position
of the manipulator is controlled by combining these two
control modes. «

Since the passive joints are controlled with the
brakes released and the active joints are controlled with
the brakes engaged, the control mode should be changed at
least once so all the joints.of the manipulator can reach
the desired position. Here, mode switching is performed
twice and the period of positioning is divided into the
following three periods:

(i) v joints are fixed (brakes ON)
(ii)  joints are free (brakes OFF)
(iii) w joints are fixed (brakes ON)

In period (i), the passive joints are fixed and initial
acceleration of the n-r active joints is performed; In period
(ii), the passive joints are released and positioning of r
joints, including all the passive joints, is performed along
a desired trajectory; In (iii), the passive joint is fixed
again and positioning of the n-r active joints is
performed. ‘ .

The number of passive joints is limited to the
number of active joints in the above discussions. When
the manipulator has r actuators, r joints can be positioned
simultancously. However, if the brakes are released
sequentially, the number of passive joints has no limit
and the manipulator with more passive joints than
actuators can be controlled.

We applied this algorithm to the same manipulator
as used in this paper (Fig.1). The stick diagram in Fig.2
represents an experimental result of PTP control. We
investigated the absolute accuracy of positioning. The
positioning error of the passive joint was less than 1.3 x
10-3rad. We also investigated the repetitive precision.
The standard deviation of the passive joint angle was 1.7
x 10"*rad when positioning was performed 100 times. It
was confirmed that precise positioning of the passive
joint is possible by the proposed control method.
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Figure 1 Two-Degree-of-Freedom Manipulator
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Figure 2 Point-to-Point Control

3. Equations of Motion
with Operational Coordinates

In this section, the equations of motion of the
manipulator are rewritten in terms of operational
coordinates p € R”. We assume that the operational
coordinates and the joint coordinates are related as follows

pP=Jq ®

where, J € R™ " js a Jacobian matrix. Note that the
manipulator has n degrees of freedom and is non-
redundant. In the case of a redundant manipulator, some
auxiliary coordinates must be added to the operational
coordinates so that J can be inverted. When (8) is
differentiated with respect to time, we obtain

p=Ji+Jq ©



If J is non-singular

4=J1p - Jo) (10)
Here,p,MandH=] -1 are partitioned as follows
n
X |nr M1} -
p= [y] r M= [Mz]n-r
nr r : (11)
H=[H; Hyln

We define components y of the operational coordinates as
controlled coordinates and define the remaining
components x as compensating coordinates. The desired
motion is assigned to the controlled coordinates while the
compensating coordinates are controlled so as to realize
the desired motion of the controlled coordinates. When
eq.(10) and (11) are substituted in eq.(1) we obtain

MHi% + M{H2y - M{HJq+ b1 =7
M,H % + MoHy - MoHJq+ by =0

(12a)
(12b)

The equations of motion are represented in terms of the
controlled and the compensating operational coordinates.
Moreover, they are divided into eq.(12a), which are related
to the active joints, and eq.(12b), which are related to the
passive joints.

4. Control in an Operational
Coordinate Space

In this section, it is shown first that the desired
accelerations can be generated arbitrarily at the coordinates
of the same number as the active joints. We designed a
control system which gives priority to the controlled
coordinates. It prescribes a desired trajectory for the
controlled coordinates and generates motion of the
compensating coordinates in order to realize the desired
trajectory of the controlled coordinates.

When measured values of the joint angles and
velocities are substituted in q and ¢ of eq.(12a) and (12b),
each component of M, H, J and b is determined. If

the controlled coordinates y, €q.(12b) can be considered as
a linear equation with regard to k. If MpH e RC+7)X(n-7)
is non-singular (and hence invertible), (12b) can be solved
uniquely as

% = (MaH 1) (-M2H2ya+MoHIg-b2) (13)

When eq.(13) is substituted in eq.(12a), the torque T to
realize the desired accelerations yq can be determined.

= {M;-M1H(M2H 1) M2} (H2¥a-HIQ)

+by - MH;(M2H ) by (14
When we apply this torque T to the active joints, we will
obtain the desired accelerations yg. In other words, the
accelerations of r controlled coordinates of the operational
coordinates of the manipulator can be arbitrarily
determined by the torque of the r active joints.

In case of an open loop control, in which the torque
is calculated according to eq.(14) with the accelerations of
the desired trajectory, it is possible that the manipulator
deviates from the desired trajectory due to the disturbances
or the modeling error. We designed a closed loop control
system to suppress the tracking error. The following PID
control is applied

¥d =ya + Ky(a-y) + Kp(ya-y) + Kif(ya-y)dt (15)

where yd, yq and yq are the desired values of positions,
velocities and accelerations of the controlled coordinates
respectively. Ky, Kp and K are the diagonal gain
matrix. Accelerations yq of eq.(15) is substituted in ¥4
of eq.(14) to determine the torque T. From eq.(15)

(Fa-§)+Kv(Fa-)+Kp(ya-y)+Kif(ya-y)dt =0  (16)

The controlled coordinates are guaranteed to converge to
the desired values if Ky, Kp and K are chosen such that

all the poles of the system (16) are located in the left-half
plane. Fig.3 represents a block diagram of the control

. . . L system.
desired values yq are assigned to the accelerations ¥ o f
. q
> |Sz ! Ya l E‘_l
. i
+ Ki y d . T . N
Yd Kp+Ky S Calculation of eq.(14)}—»{ Active Joints | q
: '
- Passive Joints
y Kinematic Calculation e

Figure 3 Control System in an Operational Coordinate System
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5. Experiments

5.1 Two-Degree-of-Freedom Manipulator

We made experiments of this control method with a
two-degree-of-freedom horizontally-articulated
manipulator. Fig.1 shows the manipulator. The first
axis (¢) is an active joint and the second axis (y) is a
passive joint. The active joint is driven by a DC servo
motor with a harmonic drive gear. The brake of the
passive joint is an electromagnetic type. Fig.4 shows
the model of the manipulator. Table 1 shows the
parameters of the model. In the eq.(1)

%‘mlL2+gﬁn2L2+m2L2cos\|l+J M ';“mzL2+%m2chos\|l
;ﬁn2L2+'21‘rn2L2§os\|I

1
mL?

.1 .
-myL2siny¢iy-5m,L2sinyy2+D, 6
b=| - 22 (7

%mszginw¢2

Figure 4 Model of the Manipulator

Table 1 Parameters of the Manipulator

m] |Mass of link 1 2.0kg

m) |Mass of link 2 _ 1.0kg

L |Length of link 1 and 2 0.3m

Dj |Viscous friction of the actuator  |2.2Nms/rad
JM_|Moment of inertia of the actuator [0.24kgm?

5.2 Control in Cartesian Coordinate Space
A Cartesian coordinate space is taken as an
operational coordinate space. The origin is at the first
joint. The coordinate transformation from the joint
coordinate space to the operational coordinate space is

x = Lcos¢ + Leos(¢+y)
y = Lsin¢ + Lsin(¢+y) (18)

The Jacobian matrix is

_ ¢ [ -sin¢-sin(¢+y) -sin(¢+@
J=L [cos¢+cos(¢+\y) cos(¢p+y) {1

There are two cases; the case in which y is the controlled
coordinate and x is the compensating coordinate and the
case in which x is the controlled coordinate and y is the
compensating coordinate. From the state where the
manipulator is at rest, a step change of the reference is
given for the controlled coordinate in each case. Fig.5
shows the response. The initial position is x=0.4(m),
y=0(m). InFig.5(a)y is the controlled coordinate and the

- reference is y=0.05(m). In Fig.5(b) x is the controlled
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coordinate and the reference is x=0.45(m). The feedback
gains are set so that the pole of the system is a triple
root. The sampling interval is 2ms with i80386+80387.
(In the case of multi-degree-of-freedom, eq.(14) includes
[n3 2n2r+nre+7n2 -3nr+2r2] multiplications and inverse
of (n-r)x(n-r) matrix. It would be desirable to develop an
efficient computation algorithm.) In the result, the
measured value of the controlled coordinate (solid line)
converges to the reference (dotted line). The error from
the reference after the convergence is (a) 0.14mm, (b)
0.08mm. Next, a desired trajectory is assigned for the
controlled coordinate. Fig.6 shows the result of the
trajectory tracking. The controlled coordinate increases
with constant velocity from the stationary state and
decreases with constant velocity again in the desired
trajectory. Abrupt change in velocity occurs at the
beginning of the trajectory and at the moment the
direction changes. The measured value (solid line)
follows the desired trajectory (dotted line) except just after
those moments. The stick diagram (Fig.7) represents the
motion of the manipulator, when y coordinate tracks a
desired trajectory with constant velocity. The initial
acceleration is done with the passive joint fixed. In Fig.7
y coordinate increases constantly.

0.05F - -3
(m)

0.5 1(s) TIME

(a) Controlled Coordinate: y

045k~ /===
(m)

0.5 1(s) TIME

0.4
(b) Controlled Coordinate: x

Figure 5 Step Response of the Controlled Coordinate



0.151
(m)
0.1+

0.05f

0.5 1(s) TIME

(a) Controlled Coordinate: y

0.5t
(m)

0.45}

0.4}

p 0.5 1(s) TIME

0.35

(b) Controlled Coordinate: x

Figure 6 Tracking of a Desired Traje,ctory

x0 = 0.35(m)
yo=0 (m)

yo = 0.2(m/s)
yd = 0.2(m/s)

Figure 7 Motion of the Manipulator

5.3 Dynamic Singularity

The condition of realization of this control method
is that eq.(12b) has a unique solution. The non-
singularity of matrix M2H1 (detfM2H ] # 0) is
equivalent to this condition. In the case of a two-degree-
of-freedom manipulator, the condition is MaH; # 0.
Fig.8 shows the dynamic singular points of the
manipulator which is used in the experiments. M2H1 =
0 at those points. In Fig.8(a) y is the controlled
coordinate and in Fig.8(b) x is the controlled coordinate.

The acceleration of the compensating coordinate
cannot have influence on the acceleration of the controlled
coordinate in those positions. The acceleration of the
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controlled coordinate is determined by the position and
velocity of the manipulator irrespective of the acceleration
of the compensating coordinate. Therefore this method is
difficult to use near these dynamic singular points. Some
algorithm to avoid these difficulties is necessary. When
Fig.8(a) and (b) are compared, it is observed that these
dynamic singular points are distributed alternately. In
other words, where the one coordinate is not controllable,
the other coordinate is controllable. It is expected that a
trajectory can be composed in which controlled
coordinates are switched alternately in order to avoid
dynamic singularity.

(b) Controlled Coordinate: x

Figure 8 Location of Dynamic Singular Points

5.4 Modelling Error

This method depends essentially on a dynamic
model of the manipulator. In the experiments of this
paper, each parameter of the manipulator was calculated or
determined experimentally in advance. However, a load at
the tip of the manipulator causes the change of the
dynamic parameters. Here, the effect of the modelling
error is roughly investigated. From eq.(12a), (12b), (14)
and (15) the accelerations of the controlled coordinates are
represented as

¥ = a(@)l6(q) (ja+Kv(¥a-$)+Kp(ya-y)

+Kif(ya-y)dt} +o(q) 1 {B(a.9)-Bla.9)} (20)



where,

a(q) = M1Hz-MH; (M2H ) IMoH,
B(q.) = -{M;-M1H;(M2H) 1M }HJq
+b1 - M{H(M2H ) 1b;

a(q), ﬁ(q,q) are the estimates of o(q), B(q.q) respectively.
When the model parameters are complete (6(q) = a(q),
B(q.9) = P(q.4)), this relationship leads to eq.(16).
Eq.(20) has basically the same form as the computed
torque method of a conventional manipulator which has
an actuator for each joint. That is, the proposed control
of the controlled coordinates is no less robust than the
computed torque method. :

On the other hand, the compensating coordinates
absorb the modelling error. If the motion of the
manipulator is simulated in advance, the trajectory of
compensating coordinates deviates from the simulation.
In this sense, the proposed method is sensitive to the
modelling error. The authors expect that this method
may become more effective if it is used together with a
real-time parameter identification or adaptive control
method [11].

We also investigated the robustness of the control
method experimentally. A weight (0.5kg) is attached to
the tip of the manipulator. "The same experiments of step
response as in Fig.5 are done using the parameter without
considering the weight. The error of the contrclled
coordinates after the step response is x : 0.18mm, y :
0.24mm. The increase in the error of the controlled

. coordinates caused by the modelling error is small.

6. Conclusions

A method to control a manipulator with passive
joints in an operational coordinate space has been
proposed. The equations of the motion are represented in
terms of operational coordinates. The desired
accelerations can be generated at the controlled coordinates
of the same number as active joints by using dynamic
coupling among the coordinates. In the example,
position of a two-degree-of-freedom manipulator with a
passive joint is represented in a Cartesian coordinate
space. One of the two coordinates is controlled to follow
desired value. Since closed loop control is included in
this method, the controlled coordinates can be controlled
precisely even under the presence of disturbances or small
modeling errors.
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