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Abstract— In this paper we introduce a novel concept of obstacle 
avoidance through tactile interaction. The implementation of the 
approach was realized on humanoid robot arm with optical 
torque sensors distributed to each robot joint. When 
manipulator collides with an object, the control system enables to 
follow the object outline smoothly till robot reaches the target 
point. Such approach ensures not only safe obstacle avoidance 
but also acquisition of indispensable information about 
environment. The methods of object stiffness calculation, contact 
point estimation, and shape interpolation are detailed in the 
paper. The possible tasks of the robot with intelligent whole-arm 
obstacle avoidance control are summarized and illustrated in this 
work as well. The controllable compliance of robot arm joint can 
be extremely useful in a wide range of applications. 

I. INTRODUCTION 
Obstacle avoidance and motion planning are both necessary 

components for any robotic task. Obstacle avoidance refers to 
planning collision-free trajectories for robotic systems while 
motion planning refers to planning smooth motions.  

Many efforts have been devoted to path planning in 
cluttered environment, but in most of approaches the exact 
world model is assumed and no sensors are utilized [1], [2]. 
When we consider the real indoor environments, known 
obstacles (e.g. chairs, tables, etc.) and unknown obstacles 
(persons approaching the robot, unmapped environment, etc.) 
change their location dynamically. Moreover, the object shape, 
speed and position can also alter in unpredictable way. Robot 
control system operating in unstructured dynamic 
environment must execute skilful manoeuvre that avoids a 
collision and directs the robot to its goal position. In order to 
provide the robot with detailed real-time environment view it 
is imperative to use sensor data. 

The most effective solution of preventing collision is to 
endow the whole robot arm with the ability to safely interact 
and contact with environment in real time. Lumelsky [3] 
pioneered in the idea to cover manipulator with a sensitive 
skin capable of detecting nearby objects. An array of infrared 
proximity sensors delivers the information about obstacles 
obstructing arm motion to the control system. The algorithm 
of motion planner manoeuvres the robot arm avoiding impact 
[4]. Recently proposed sophisticated imaging systems, such as 
stereovision and laser scanning, presume usage of expensive 
detectors and complex signal processing techniques. They 
sense only narrow space around the robot body. The concept 
of sensor array composed of ultrasonic rangefinders and 
infrared detectors is described in [5]. Researchers are pursuing 
the goal of the development of a robust proximity sensor 

system with application in mobile robotics, taking advantage 
of high performance/cost ratio of the components and low 
computational demands of the detection method.  

Due to the specular nature of ultrasonic waves reflection, 
the only objects normally located to the sensor acoustic axis 
can be accurately detected. When it comes to infrared sensor, 
one of the most important problems is limited measuring 
performance. The amplitude from the infrared sensor largely 
depends on reflectivity of the object, and it changes with the 
target distance in non-linear manner. There is high possibility 
that proximity sensors fail to detect obstacle along the robot 
trajectory. In this case an immediate vicinity of the target can 
mislead robot control system invoking the abrupt change in 
the speed resulting in harm of the environment. 

We argue that robot should be mainly controlled not to 
avoid the collision but rather to ensure tactile interaction with 
environment. The benefits of such interaction are obvious in 
nature. From the early childhood, humans touch objects to 
investigate the world and acquire a plenty of fundamental 
information about objects (shape, stiffness, texture, location, 
fixation, etc.). Conventional approaches to handle the 
interaction between a manipulator and environment are based 
on impedance control of a robot arm according to applied 
force vector measured at the manipulator wrist [6]. However, 
the rest parts of the robot body (forearm, elbow, upper arm, 
shoulder, and torso) are presenting significant danger not only 
to human being, but also to the robot structure itself. A fairly 
small work has been done on tactile interaction of the whole 
robot arm with environment. 

Bauer [7] conducted very practical and useful research on 
exploration of the environment and accomplishment of 
pushing task by autonomous mobile robot. The idea 
underlying the algorithm is to identify free space, the object 
location, and object shape by several attempts made by the 
robot arm in order to pass obstacle through. It should be noted, 
however, that the proposed system cannot detect the contact 
point coordinates, requires time-consuming obstacle 
identification process, and, as authors reported, the 
exploration algorithm fails when several collisions occur 
simultaneously. 

To cope with spatial uncertainty of unknown, unstructured 
environment we elaborated novel technique of obstacle 
avoidance through interaction. When the robot arm is 
obstructed by obstacle the controller directs the manipulator to 
the target point in such a way that robot arm surface follows 
the contour of the object.  
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II. ROBOT ARM AND SENSORY SYSTEM 
The developed robot arm (Fig. 1(a)) has 4-DOF: Roll, Pitch, 

Yaw joints of a shoulder, and Pitch joint of an elbow. Such 
orthogonal disposition of the axes simplifies the installation of 
the torque sensors and motor drives into the joints, allowing 
thus avoidance of application of additional belt driven 
actuators. Coordinate systems based on Denavit-Hartenberg 
convention are represented in Fig. 2. The 8-DOF robot hand 
allows performing dexterous manipulations. 

Fig. 1  Humanoid robot arm and coordinate system 
 
Each robot joint is equipped with optical torque sensor 

directly connected to the output shaft of harmonic drive. We 
kept the arm proportions the same as in average height 
Japanese male, aged 25: upper arm length L1 of 0.308 m; 
upper arm circumference of 0.251 m; forearm length L2 of 
0.241 m; forearm circumference of 0.189 m.  

In order to facilitate the realization of torque measurement 
in each arm joint, we developed new optical torque sensors 
based on results presented in [8]. The novelty of our method is 
application of the ultra-small size photointerrupter (PI) RPI-
121 as sensitive element to measure relative motion of sensor 
components. The dimensions of the PI (3.6 mm × 2.6 mm × 
3.3 mm) and its weight of 0.05 g allow realization of compact 
design. The optical torque sensor is set between the driving 
shaft of the harmonic transmission and driven shaft of the 
joint (Fig. 2). When the load is applied to the robot joint, the 
magnitude of the output signal from the PI corresponds to the 
exerted load. 

 
 
 
 
 
 
 
 
 

Fig. 2  Torque sensor of the elbow joint 
 
The spring members attached to the first, second, and 

third/fourth joints were designed to measure torque of ± 12.5 

Nm, ± 10.5 Nm, and ± 4.5 Nm respectively. Each sensor was 
calibrated by means of attachment of reference weights to the 
lever arm. Non-linearity of 2.5 % of Full Scale was calculated 
using maximum deviated value from the best-fit line. 

The developed optical torque sensors have high 
dependability, good accuracy (even in electrically noisy 
environment), low price, compact sizes, and light weigh. 

III. CONTACTING OBJECT PARAMETER IDENTIFICATION WITH 
TACTILE SENSING 

A. Contact State Recognition  
During the first stage of control the robot links rotate until 

one of them contacts the object. Below, the elaborated 
algorithm of contact detection is demonstrated.  

In addition to contact force, torque sensors continuously 
measure the gravity and inertial load. As robot arm moves 
with low angular speed, the inertial load component can be 
disregarded. Let us consider gravity torque calculation in the 
case when robot arm performs only planar motion, and only 
the first and fourth joints operate (Fig. 3). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Robot arm subjected to gravity loading 
 
The Newton-Euler dynamics formulation was adopted to 

calculate reference value of the gravity torques. The gravity 
torques acting in the first τg1 and fourth joints τg4 are derived 
from: 

( )1 2 4 1 4 2 1 1 2 1τ sin(θ θ ) sin(θ ) sin(θ )g M Mm g L L m gL= + + +  

4 2 4 1 4τ sin(θ θ )g Mm gL= + ,                              (1) 
 

where m1 and m2 are the point masses of the first and second 
link, respectively; LM2 and LM4 are the distances from the first 
and second link origins to the centers of mass, respectively. 

The experiment with the fourth joint of the robot arm was 
conducted in order to measure the gravity torque (Fig. 4(a)) 
and to estimate the error by comparison with reference model 
(Fig. 4(b)). 

As can be seen from Fig. 4, the pick values of the gravity 
torque estimation error arise at the start and stop stages of the 
joint rotation. The reason of this is high inertial loading that 
provokes the vibrations during acceleration and deceleration 
transient. This disturbance can be evaluated by using 
accelerometers and excluded from further consideration. 
Observing the measurement error plot, we can assign the 
relevant threshold that triggers control of constraint motion. 
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Fig. 4  Experimental results of gravity measurement 

B. Estimation of Contacting Object Stiffness 
During contact transition we can acquire information about 

collision danger of contacting object through its stiffness 
estimation. This can be done by establishing stiff contact 
through PD control of robot arm with high P-gain and setting 
the high threshold value. For the following experimental 
results the threshold was chosen as high as 0.05 Nm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Experimental results of stiffness estimation 

The robot was commanded to follow the trajectory in free 
space with constant angular velocity. An object was placed on 
this path so that the second link would contact it. The joint 
torque was recorded for the fourth joint while contacting with 
object. The Fig. 5(a-e) shows experimental results when link 
comes into contact with objects having different stiffness 
varying from very low rate to very high, namely, piece of 
sponge, rubber sponge, rubber, chemical wood, and aluminum, 
respectively. The time derivative of torque during impact with 
aluminum plate is given in Fig. 5(f). It is apparent from the 
plots presented above that the stiffer object comes into contact 
with robot arm the smaller angle the joint rotates. 
Heterogeneous nature of sponge material explains highly non-
linear behavior of stiffness curve (Fig. 5(a)).  

The elastic deformation of the object and inherent 
compliance of the robot joints lead to rotation of robot arm by 
angle ∆θi during contact transience (Fig. 6).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6  The scheme for elastic deformation calculation 
 
The distance, on which contact point C on the robot link 

surface 1 moves perpendicularly to the radius ri under torque 
∆τi, is equal to ri∆θi (since the angle ∆θi is small). The 
unknown angle ϕi can be found taking into account that 
∠C’CB=∠OCA=ϕi: 

 
OAφ arctan arctan
CA

i

i
i

C

h
P

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
,                  (2) 

 
where hi equals half of the robot link thickness.  

From the right triangle ∆CBC’ the total elastic deformation 
is calculated as: 

 
( )δ θ cos φi i i ir= ∆ .                             (3) 

 
Radius of contact point trajectory ri is found as 

2 2
ii C ir P h= +  through consideration of right triangle ∆CAO. 

Now, we can easily solve for total stiffness:  
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By linear approximation, we take into account only two 

values of θi for τi nearest to 0.02 Nm and 0.05 Nm. Then, 
from the experimental diagrams (Fig. 5(a-e)) we obtain ∆θi 
and ∆τi and list them in Table 1.  

 
TABLE I 

FINDINGS FROM EXPERIMENTAL DIAGRAMS 

Parameter Sponge Rubber 
sponge Rubber Wood 

∆θi 10-4 [rad] 39.53 10.82 4.12 3.84 

∆τi 10-2[Nm] 2.98 3.0 2.79 2.92 

 
The total elastic deformation δi is made up of elastic 

deformation caused by object compliance δo and one 
generated by joint flexibility δri. That is, we can write:  

 

δ =δ +δni ni ni
i o ri

i o ri

F R F
k k k

= = + ,                    (5) 

 
where Rni is the reaction, absolute value of which equals Fni; 
ko and kri are stiffness of the object and stiffness of robot link, 
respectively.  

The coefficient kri is mainly defined by torque sensor 
stiffness, harmonic drive stiffness, structural flexibility, and P-
gain magnitude. Detailed examination has showed that 
complex theoretical model of robot link stiffness can hardly 
provide accurate estimation of kri. Therefore, we can set the 
value of robot link stiffness close to total stiffness in the most 
hard contact case. This assumption is valid because during 
impact with hard environment, such as aluminum plate, the 
contact deformation of the object is too small to be accounted 
for (ko ≈ ∞). Thus, using Eq. (2)-(4) and the data presented in 
Fig. 5(a-e) we derive unknown value of kri: 
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The stiffness of the objects are calculated from the 

following equation: 
 

ri i
o
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⋅
=

−
,                                      (6) 

 
where ki is defined by Eq. (4). Derived values of ki and ko are 
given in Table 2. 

 

TABLE II 
TOTAL STIFFNESS AND OBJECT STIFFNESS  

Parameter Sponge Rubber 
sponge Rubber Wood 

ki [N/m] 260.84 959.3 2343.78 2469.04 

ko [N/m] 282.04 1325.92 7223.94 8562.90 

 
The obtained results demonstrate strong correspondence of 

correlation among calculated object stiffness with that of real 
objects. Naturally, the actual stiffness of colliding 
environment differs from calculated one with finite error. To 
achieve high accuracy, specific equipment is needed. 
However, our aim was only assessment of the danger level of 
robot arm collision with object. Specifically, we can define 
that sponge and rubber sponge material are safe for interaction, 
but rubber, wood, and metal pose threat while striking the 
robot arm. Consequently, we have succeeded in solving main 
task, that is, object classification by getting information about 
stiffness during impact.  

In case when collision must be detected robustly without 
consideration of object properties, the value of time derivative 
of torque can be used to judge the impact value (Fig. 5(f)). 

C. Shape Recognition and Contact Point Determination  
The information about contact point coordinates is 

necessary in calculation of the object stiffness, applied force 
vector, and for shape reconstruction. The tactile sensor can be 
useful in this case. However, our goal is to perform tactile 
interaction with environment without complicated sensory 
system of the robot. The method, we are presenting here, 
results from the assumption that the coordinates of 
intersection of the subsequent profiles of the robot arm while 
tactile obstacle avoidance equals the coordinates of contact 
points. Since the increment of joint angles is small enough, we 
can detect contact point with admissible accuracy.  

Let us consider the case when forearm is contacting with 
object. The line representing the robot forearm is located by 
the following position vectors: 
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where s1, s2, s3, s4, c1, c2, c3, and c4 are abbreviations for 
sin(θ1), sin(θ2), sin(θ3), sin(θ4), cos(θ1), cos(θ2), cos(θ3), and 
cos(θ4), respectively; L1, L2 are the lengths of the upper arm 
and forearm, respectively, Pt, Pe are vectors locating tip of the 
robot and elbow joint, respectively. 

On the next step of iteration θi+∆θi we calculate the new 
coordinates of the end points of forearm. The intersection 



point of two consequent lines will define the coordinates of 
contact point.  

Object shape recognition is usually performed by global 
scanning. This method requires the sensor to scan large 
segments of an object surface that makes recognition process 
slow. We propose tactile object-recognition method based on 
the acquisition and formulation of information in the form of 
image primitives. Tactile images are generated when robot 
arm registers a series of contact points with an object. 
Graphical modelling of the movement of the robot arm 
following along round countor is shown in Fig. 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7  Round shape recognition through tactile interaction 
 
The node points obtained by employing the above-

mentioned algorithm can be interpolated by B-splines [9]:  
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where Si(t) is a quadratic parametric polynomial, pi are the 
control points, t ∈ [0,1] is the global parameter. 

Fig. 7(a) shows arc of the object contour, while Fig. 7(b-d) 
represents polylines obtained by linear, arc, and B-spline 
interpolation (have precise convergence), respectively. The 
algorithm of following the contour of the rectangular-shaped 
object is as follows. In presence of vertex the lines intersect in 
one point. When coordinates of intersection point change 
drastically the edge of the object is recognized.  

IV. CONTROL OF TACTILE INTERACTION OF ROBOT ARM WHILE 
OBSTACLE AVOIDANCE 

To achieve skillful human-like behavior, the robot has to be 
able to change its dynamic characteristics depending on time-
varying interaction forces. The most efficient method of 
controlling the interaction of a manipulator and environment 
is impedance control. This approach enables to regulate 
response properties of robot to external forces through 
modifying the mechanical impedance parameters [10].  

The desired impedance properties of i-th joint of 

manipulator can be expressed as: 
θ θ θ τ ;  θ θ θdi i di i di i EXTi i ci diJ D K∆ + ∆ + ∆ = ∆ = − ,     (10) 

 
where Jdi, Ddi, Kdi are the desired inertia, damping, and 
stiffness of i-th joint, respectively; τEXTi is torque applied to i-
th joint; ∆θi is the difference between the current compliant 
angle θci and desired one θdi.  

The state-space presentation of Eq. (10) is:  
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where υi is the state variable                 .  

The discrete presentation of Eq. (11) with sampling time of 
T is needed for program code implementation:  
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For the fastest non-oscillatory response we have: 

 

1 1λ

1

1 λ
/ 1 λ /

T
d

d d d d

T T
A e

K T J T D T J
−⎡ ⎤

= ⎢ ⎥− − −⎣ ⎦
,         (13) 

( )
( )

1

1

λ
11

2 λ

1 (1 λ )1
/(2 )

T

d d T
d d d

e T
B A I A B

K D J Te
−

⎡ ⎤− −
= − = ⎢ ⎥

⎢ ⎥⎣ ⎦

,      (14) 

 
where I is the identity matrix. 

The control algorithm includes several stages. When the 
joint torque value exceeds the threshold, the contact state is 
recognized. Then, the stiffness of the robot arm is assigned 
according to the calculated object stiffness. Finally, robot arm 
follows the trajectory of the object outline by means of local 
impedance controller. On each step of iteration the control 
system verifies the magnitude of the applied force vector to be 
equal constant value (Fig. 8).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8  Robot arm following the trajectory along the table surface 

As example of control implementation, robot arm moving 
along the object surface is shown in Fig. 9. 
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The remarkable opportunity of ensuring safe robot-
environment interaction is that we can establish different 
dynamic parameters of robot arm contacting with environment 
according to calculated object stiffness. This is inherent 
capability of humans, since when we collide with stiff objects 
we tend to soften our muscles as much as we can. 

We summarize possible cases of application of the robot 
enabling intelligent tactile obstacle avoidance as follows:  

1) In extremely cramped environment robot arm finds the 
path through interaction with obstacles.  

2) A robot reaches for visible object located inside narrow 
space. The robot arm must contact and follow the 
surface of the obstacle represented by sides of the box 
to fulfill the task. 

3) A robot reaches for object located beyond of the robot 
camera visibility range. In such cases robot arm needs 
to be equipped with additional cameras in order to 
process collision softly on its own.  

4) A robot investigates the indoor area to achieve 
situational awareness without necessity of its bulky 
body to enter the room. When the situation is assessed, 
the robot body can elude the jamb and enter into the 
room carefully. 

5) A robot structures the environment. A vision system of 
robots cannot determine the distance to the object in 
3D space. By tactile interaction, robot can precisely 
define the object location and reachable working area. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper we proposed a novel approach to obstacle 

avoidance through whole-arm tactile interaction. The 
developed robot arm and control system enable manipulator 
encountered with object to adapt the planned motion to the 
obstacle shape. Such algorithm is especially valuable for the 
real indoor environments, when obstacles change their 
location dynamically.  

We proposed the methods of object stiffness evaluation, 
contact point calculation, and object shape reconstruction. To 
verify their feasibility and robustness, the experiments and 
simulations were performed. Obtained results show that many 

essential parameters of the obstacle can be accurately 
identified through physical contact. The knowledge of object 
stiffness endows robot control with human-like ability to 
safely interact with environment. The robot can modify the 
joint compliance to avoid high impact forces.  

Our future research will be devoted to control of the robot 
arm interacting with movable objects. The method of the 
friction estimation while pushing the object will also be the 
subject of our research. 
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