Sensory Integration of Binocular Visual Space and Kinesthetic Space in Visual Reaching Experiments

Taro MAEDA* and Shinuma TACHI**

It is known in psychology that the human visual space and kinesthetic space do not completely coincide. Human subject's response underestimates the hand reaching point in depth under the visual control of reaching movement without vision of his limb. In this paper, six neural network models of sensory integration of binocular visual space and kinesthetic space using hand position are presented to find how the joint angles of the right arm and eye movements are integrated into the human space perception. Visual reaching experiments revealed that one of the presented models showed a characteristics which was similar to those of the human subjects. The structure of the model is equivalent to the structure of human sensory integration. In this sensory integration, the signal space for the perception of the positional coincidence is that of the arm joint angles. The signals of eye movements are transformed into the equivalent signals of the arm joint angles which are similar to the signals for the arm control. It suggests that such a structure is organized for the needs of the arm control in this type of sensory motion control.

Key Words: visual reaching experiment, sensory integration, neural network model, binocular vision, hand-eye system
信号間の統合によって、それらが後像的に獲得された感覚量との開 набlは兼ね、これまでのホログラフィア制とい
った直交視路線上の感覚量に関する雑念や実験がそのま
までは助もたるものではない。しかし、生体が生得的な
脳体差や脳体の相手に伴う生体の各種パラメータの変化
に適応するためには、何らかの学者の機関をも必要があ
る。こうした学者機能に関しては、反転視路などを経る
適応実験に代表される残念現象などによって非常に多く
の研究がなされており、その存在と可能性については疑
うべくない。また、人間の神経系において後像的な誤
行増強によってこうしたハドアイデアシステムの間合が可
能であることについては、生理学的知識を反映した神経
回路線モデルの立場から計算論的等が研究が行われてい
る[12]。よって、これら感覚間の写り違いの現象もまた学
習によって感覚間の統合を実現する人間の神経処理系の
特性と考えることができる。

従来の研究においては、これら人間の空間位置知覚にお
ける視覚感覚間の統合の特性は心理現象として解析さ
れてきたが、その感覚間の写り違いの発生の原因につい
ての議論はこれまでになされていなかった。本報告におい
ては、これらの空間知覚実験において実際に人間が用い
ている生体内情報に注目し、人間の視覚性到達運動の際
にみられる視覚視と上肢運動感覚の統合の特性について
被験者を用いた固定と神経回路線的学者によるモデルを
用いてシミュレーションを行い、比較・考察をくわえる。

2. 瞳狭視性到達実験

まず、被験者を対象に視覚性到達実験を行い、到達位
置のずれ量の測定を行った。ここで行ったのはビジュア
ルフィードバックを断った状態での視覚に対する定位置
実験である。

従来この種の定位実験は多くの場合、測定の対象とす
る生体情報を正確に指定しておらず、また直交視路系に
基づいて設計されることが多い[13]。このためわれわれ
は、本来生体と直交関係のない直交視路系よりも眼軸運
動や上肢運動にみられる生体本来のもの情報形態に基づ
いた視覚系において実験を行う必要があると考えた。

Fig. 1（a）に実験装置の概要を示す。被験者は正面を

![Target](image-url)

（a）Experimental setup (side view) （b）The equivalent position of the target points: This is a
top view. L and R are left and right eyeball positions, respectively

![Side View](image-url)

（c）Geometric model of human binocular system and right arm

Fig. 1 Visual control experiment of reaching movement without vision of the limb
（上）の状態で画面を固定される。このとき、前方に固定されたマークをとおして被験者はターゲットの仮像を観点点の前より前方に見ることになる。操作部はターゲット前面の仮像の位置に重ねて配置し、この仮像に対して被験者は右手で操作を行う。作業中の上肢の姿勢は肘を下げた状態を保つものとする。この構成によって実験の課題を目の高さの水平面での位置に制限した。これによって問題の指定を2次元のものに限定することができる。

Fig.1（b）にこの実験条件下で空間知覚に基づいている体幹傾斜を要素とするこの種の定位置実験状態では、被験者によって視点点の空間位置を知覚する際に用いる自然的な直感図式である。視覚視点によって仮想視点が視野中央において重複している状態での仮像の位置感覚を支配的であり、その結果、本論文で論じる「仮視点」は、全ての視覚要素によるものではなく、視覚による仮想を行っている際の視野の位置感覚である視聴角と視覚方向角Bによって定義するものと考えられる。また、体幹の位置と運動に関する感覚は各関節の動きを含む情報によると関節の動き重視とされている。実験では上肢の姿勢を固定した状態で仮想視点を仮定した状態で行われた。この実験では上肢の仮想視点を固定した状態で実験した。実験では6人の被験者について、各ターゲットをランダムな順序で1目ずつ全点について行い、被験者は1回目から進行し、各ターゲットに対する実際点の平均位置を求め、各視点の仮想視点位置の差を比較した。実験結果からは3名の被験者に対する結果をFig.2に示す。なお、これらの実験結果は全員、判定・測定は一様であった。

Phraibahnらの実験と同様、上肢と同様方向（この場合右方向）へのアンダーショートおよび、上肢と同様方向（この場合左方向）へのアンダーショートが観察され、この傾向は被験者EE.Kを除く全ての被験者において明確に観察された。被験者EE.Kの場合、実験方向へのアンダーショートは明確であるが、EE.Kは1回の実験で左半分のオーバーショートを示している。しかし、この被験者の傾向は今回の実験で観察されなかった。EE.Kは左手で操作をしたが、左上肢を非対称体位で操作している。EE.Kは、左上肢の非対称体位と視覚方向角Bについて観察すれば、他の被験者と同様の統一的な傾向とし、上肢の仮想視点と視覚方向角Bについて観察することができる。すなわち、これらの角度信

Fig.2 Errors between the gaze point and the hand pointing by subjects; Each white square is the gaze point. Each black square is the hand pointing by subjects.
3. 視覚性到達運動における空間知覚モデル

3.1 人間の視覚・動体空間知覚モデル

前述の視覚性到達実験において観察した生体情報から基づいて人間の視覚空間知覚をモデル化する。実験が知覚者の視覚空間において行われることから、モデルの設定点および速度運動、上肢運動と到達感覚の知覚系の視覚の方向を管理内の関係を用いて定める。さらに上肢については、姿勢を支え上げるための姿勢を下げるために適正に設定する（図1（b））。

しかし、視覚による空間位置の知覚は、視覚による位置を示している際の視覚角θと視線方向角βに基づいておりると考えられる（図1（b））。このとき、前半において示される距離に関する点P_{x+y}は周囲の距離がθのときθとθによってつづりのように表される。

\[x = E\sin(\theta) \sin(y) \]
\[z = E\cos(\theta) + \cos(\theta)\sin(y) \] 。

また、この距離は

\[y = \tan^{-1}(x/E) \]
\[\beta = \tan^{-1}(y/z) \]
\[\theta = \tan^{-1}(x/E) + \tan^{-1}(y/z) \] 。

である。

物体の位置と運動に関する感覚は各関節の動まりを受容器の情報による各関節の曲げ量であると考えられる。上記の上肢モデルに基づいた空間知覚に用いる生体情報は開節角αと開節角度βであると設定する（図1（b））。このとき、手の位置に対する関節角αの点P_{x+y}は動体角の関係がθW、角から角度の関係までがθK、上肢の角度はそれぞれL_{x+y}のときαとβによってつづりのように表される。

\[x = \sin(\theta) \frac{L_{x+y} + 2L_{x+y} \cos(\alpha) - K_{x+y}^{2}}{2} \]
\[z = \cos(\theta) \frac{L_{x+y} + 2L_{x+y} \cos(\alpha) - K_{x+y}^{2}}{2} \] 。

また、上肢の距離は

\[x = \cos(\alpha) \left((x - W)^2 + (y - L)^2 \right) / 2L_{x+y} \]
\[\beta = \tan^{-1}(x/W) \] 。(2.b)

である。

このような複数の視覚器からの空間知覚情報を統合し

て物理空間内における一貫性のある感覚運動制御を行う

ためには、(x, y)→(z, r) 間の対応関係を学習によって獲得する必要がある。そこでこの対応関係を学習するための人間の感覚統合のモデルを考え、神経回路網モデルを設定することにする。

3.2 生理学的背景

感覚統合における学習機能に関しては、記憶機能において

と反応時延などによる適応実験における察覚機能など

によって非常に多くの研究がなされている。その方法

には長期的かつ運動的要素と短期的かつ感覚的要素

を含む研究が行われている。前者を小脳、後者を前脳皮質における学習

機能を反映しているものと考えられる。

本稿、空間の知覚とは視覚感覚と上肢の運動感覚のみならず自身の位置や姿勢といったものを保有する

ことによって成立することである。脳内において多

様多様な感覚器からの入力が常に統合されている必要

がある。このような統合的な空間知覚に関係する部位とし

ては大脳皮質の視覚運動野が挙げられている。視覚的に

到達運動において上肢小脳の破壊により運動性の位置知

覚、頭頂大脳皮質の破壊により視覚性位置知覚の統合が

観察される傾向が知られている。また皮質においては

視覚性到達運動（ビジュアルフィードバックあり）に反応

する細胞や場や作動的に反応する細胞が分かって

いる。運動の視覚的統合に関係していると考えられ

ている。10

Stem96はサルの上頭前小脳、下頭頂小脳を冷涷し、視

覚ターゲットへの到達実験における到達時間を計測して

いる。なお、この実験に用いたターゲットはサルを立

たと生物的な円弧上で左右方向に移動するもので、実

験的な変化はない。また、ビジョナルフィード

バックもないわけではない。

この報告によれば下頭頂小脳（7節）の冷凍により早い

動きの視覚性到達実験において違いが見られる。これは

ビジョナルフィードバックなしのフィードフォワード

動作に違いが生じていることが考えられる。観察された現象は、

1) 冷却後、反対側の上肢による反対側のターゲットへの

到達時間の増加（外側ほど増加が著しい）。

2) 同時に反対側のターゲットを視覚しきっちになる。

3) 反対側のターゲットへの到達運動、すなわちターゲッ

トより中央よりの位置にミスリードしてから補正が始

まる。

これらの現象は7節が視覚性の位置知覚機能（外側、お

べて）に関わっており、これが影響されているものと考え

られる。また、この部位の視覚性位置知覚が反対側の半

側空間の知覚のみを反映していることが考えられる。

また上頭頂小脳（5節）の冷凍により
1) 冷静側と反対側の上肢による到達運動が囲まれたターゲットに対して不器用になる。
2) ピジュアルフィードバックなどでは反対側の上肢の手の位置がわからないようになっている。
これらの現象は、5つの運動性の位置知覚機能（頭→手、手→眼）にかかっている。
3) ま、この部の運動性の位置知覚が反対側の上肢の位置感覚を制御運動に関与してずれないためと考えられる。
以上の各種位置知覚とその関連部位を整理するとつきのようになる。
1) 左上頭部小脳：左半側運動空間知覚
2) 左下顔部小脳：左半側運動空間知覚
3) 左上顔部小脳：左半側運動空間知覚
4) 右上顔部小脳：右半側運動空間知覚
こうした知覚に基づき、視覚のターゲットの位置上肢を動かすという視覚性到達基準における情報の流れをモデル化した場合、関連部位は1→3→1である。その場合、視覚情報の統合→内部の位置情報の関係を示す部位とし、上顔部小脳（位置3）を用いるモデルと、下顔部小脳（部位1）、2）2）を用いるモデルを考えることができる。
すなわち、前者は主観的感覚性としての位置の一致を左半側運動感覚性の空間感覚において行うモデル、後者は眼球運動感覚性の空間感覚において行うモデルに相当する。
3.3 知覚信号空間と処理信号空間
生体内において実感覚運動からの情報を統合する場合、それが量的な情報であるならば、それらを統計的に知覚するためにはなるかの共通の尺度として評価する必要がある。よって主観的感覚性とは、この尺度において各種情報の評価を反映したものであると考えられる。今回の実験実験を例に挙げると、到達運動の際の上肢運動感覚の位置情報と被験者視覚的感覚の位置情報が、この共通尺度において表現された信号空間に投射された際、これらの信号間の距離が0に変わった状態を感覚性の主要な一致（位置感覚の一致）であると捉えることができる。このような主観的感覚性の主要な一致を適応するものとして反面運動への適応などが考えられる。この実験結果からも主観的感覚性の信号空間へ反映する機能には学習機能が存在していると考えられる。
しかし、一般に人間の感覚性と物理量との間にはズレがあり、しかも一定の傾向を示す場合が多い。これは学習機能の限界を示すものであり、先立つ研究の現れであると考えられる。

3.4 神経回路における生体内信号の発生表現
前節において定義した知覚信号および処理信号として、それぞれ（r, s）と（a, b）の2組の信号のいずれかを用いたモデルを想定する。
これにより得られる情報の統合を示す際の空間基準である。これらを用いるためには、視覚情報の統合を示すという考え方には適切な統合が行われており、生理学的な指標（1）を考慮する必要である。
まず知覚信号空間として視覚性信号空間を採用したモデルを（Fig. 3(a)）に示す。r, sは独立な細胞群の発火頻度によって表現されるものであり、信号間の相互作用は加算的であるとする。これにより神経回路における信号処理はMacCulloch-Pittsの神経細胞モデルに基本的に寄与する。具体的な細胞間の信号流の構成は（3.3.4）のように表わされる。

θ = F(r, s) + D(k, a)

このモデルをもとに、学習に関する非線形追跡スカラ関数（F1, F2, D, D1, C, C2）を規定する条件によって学習信号の異なるモデルを設定する。この場合、モデルはその構造によってもとの3つのサブモデルに分類され、各モデルの構造の違いは、信号間の相互作用
第29巻 第2号

したモデルについても(3,a−d)式と同様に定義できる（Fig.3. a−d）。

\[a = F_1(C_2(b) + D_2(\alpha)) \]

\[\beta = F_2(C_1(\gamma) + D_2(\alpha)) \] (3,a)

\[a = F_1(\gamma) \]

\[\beta = F_2(\alpha) \] (C1, C2=0 Type) (3,b)

\[a = F_1(C_2(b) + \gamma) \]

\[\beta = F_2(C_1(\gamma) + D_1(\alpha)) \] (D1, D2=1 Type) (3,c)

\[a = C_2(b) + D_1(\gamma) \]

\[\beta = C_1(\alpha) + D_2(\alpha) \] (F1, F2=1 Type) (3,d)

これらのモデルにおいて、処理者空間の違いは、各モデルにおける信号間相互作用による信号処理の違いを生じる。また、信号処理空間の違いは信号処理の違いが生じる信号が物理空間にどのように反映されるかの違いを生じる。以下のシミュレーション実験において(3,b−d)および(3,b−d)式の計6個のモデルについて実験を行い、視覚性到達空間によって人間の行動と比較を行う。

3.5 神経回路モデルと数値解析モデル

前節で定義した各モデルは、干渉位置と観察点における視覚的・定義したときの視覚情報（\(\alpha, \beta \)）と入力値運動感覚情報（\(\gamma, \delta \）とその関係を入力値に構成するためを目的に学習を行う。各学習要因（F1, F2, D1, D2）はその窓にモデルの出力が実際の知覚情報に一致するように補償させる。さらに物理的不変性から、実際の実際の知覚情報が不変のとき、観察者による制御を変えることにより不変であるように補償を受ける（C1, C2=0, (b−d)および(c−d)式）における各学習要因の実例の学習において、われわれはこれまで1入力1出力の任意の非線形連続スカラー関数を学習可能な神経回路モデルで用いてきた。それぞれの学習要因は変数を学習と同様の学習法によって出力値に対する誤差が最小となるように出力値を試行する（文献11参照）。すなわち、各学習要因において入力側と親関係を出力側の変分に関してはこれを適応成分とみなし、学習による収束後の結果を出力するようになる。この結論を基にして神経回路モデルによれば学習要因の学習終了後の収束値を、汎化精度による期待値計算を用いて推定することが出来る。

最初に、知覚信号空間として視覚信号空間を採用したモデルの場合は考えた。まず、

\[\gamma = F(a, b) \]

\[\delta = \theta(a, b) \] (4)

関数を導入する。さらに、数値積分によって

\[K(a, b) = \int F(a, b) \, da \, db \]

\[E(K, F(a, b)) = \int F(a, b) \, da \, db \] (5)
なる期待値を定義し、これによって各学習段階の収束値を推定する。このとき、従来のモデルにおける学習領域は、期待値計算の際の間隔領域として定義される。

(3.1)式の場合、
\[F_1(a) = E(X|F(x, b)) \]
\[F_2(b) = E(Y|B(y, a)) \]
(6.1)
(3.2)式の場合、\(D_1 \) \(D_2 \) は同様で、さらに \(C_1, C_2 \) が
\[D_1(a) = E(X|F(x, b)) \]
\[D_2(b) = E(Y|B(y, a)) \]
(6.2)
(3.3)式の場合、\(F, F_1 \) は同様で、さらに \(C_1, C_2 \) が
\[C_1(a) = E(X|F_1,F_2,\gamma, \beta) \]
\[C_2(b) = E(Y|B, \gamma, \beta) \]
(6.3)
として与えられる。

同様にして知覚信号空間として上記運動感覚信号空間を採用したモデルについても (3.1)～(6.3) 式に対して学習領域を推定した結果を示す。

\[a = (x, \theta) \]
\[\delta = (y, \theta) \]
(4)
\[F_1(r) = E(X|A(x, r, \theta)) \]
\[F_2(r) = E(Y|B(y, r, \theta)) \]
(6.2a)
\[D_1(x) = E(X|A(x, r, \theta)) \]
\[D_2(y) = E(Y|B(y, r, \theta)) \]
(6.2b)
\[C_1(x) = E(X|F_1,F_2,\gamma, \beta) \]
\[C_2(y) = E(Y|B, \gamma, \beta) \]
(6.3)
\[F_1(r) = E(X|A(x, \theta)) \]
\[F_2(r) = E(Y|B(y, \theta)) \]
(6.3c)
\[C_1(x) = E(X|F_1,F_2,\gamma, \beta) \]
\[C_2(y) = E(Y|B, \gamma, \beta) \]
(6.3d)

4. シミュレーション実験および結果

シミュレーションの際に用いたパラメータは
\[E = 35 \text{ mm}, \quad K = 200 \text{ mm}, \quad W = 200 \text{ mm} \]
\[L_a = 360 \text{ mm}, \quad L_r = 250 \text{ mm} \]
(7)

学習領域 \(S \) は、
\[S_1 = \{(x, \theta)|x^2 + \theta^2 = 0.18 \leq x \leq 0.45\} \]
(8)

なる間隔が可能な領域 \(S \) と
\[s \] \[x = \cos(\theta) + W, \quad y = \sin(\theta) \]
\[x = (r, \beta) \quad 0 \leq r \leq (L_a + L_r - K)^{1/2}, \]
\[-65 \leq \beta \leq 180\]°
(9)

なる上限が到達可能な領域 \(S \) の値として示される。

各モデルについて得られた学習の結果の推定値に対し、人間にと同様の視覚性制御実験を行った結果を Fig. 4

以上のシミュレーション実験の結果より人間の視覚と上肢運動感覚の統合を行う処理系統の構造について考察する。今回用いたモデルにおいては視覚信号空間および処理信号空間として運動感覚の信号空間を用いたモデルに人間に近い傾向を示した。

この実験結果は人間に近い視覚と上肢運動感覚の統合において、運動感覚の信号空間においてその処理および変換が行われていることを示唆している。運動感覚の信号空間において信号間のインタラクション処理が行われていることは、第3章で述べた生理学的構造の面から考えられる。視覚性信号処理を行う第7節が左右の半球にわたって存在し、それぞれ反対側の半球を処理しているのでに対し、運動性信号処理を行う第5節が各側反対側の上肢の全信号の処理を処理している構造から、視覚的信号空間内では左右各
図4 Errors between the gaze point and the hand pointing by models:
Each white square is the gaze point. Each black square is the hand pointing by models. (a), (b), (c) are the errors by the models which transform arm movement signals into equivalent eye movement signals. (c'), (b'), (c') are the errors by the models which transform eye movement signals into equivalent arm movement signals.

半空間の信号の統合がなされず、独立に第5野に役立ただ
れ運動性信号に変換された後にインタラクションを起こ
す構造をとっているものと考えられる。この構造によっ
て総合的な信号と眼球方向性の信号のインタラクション
をも同様に運動性信号空間上で行う構造となっているも
のと思われる。
さらに、眼球運動系の空間自由度が3自由度であるの
に対し、上肢運動系がわかりの冗長自由度をもっている
ことも一定と考えられる。すなわち、2次元の眼球運動
情報から上肢運動指令を生成する際に欠損する冗長自由

Fig. 4 Errors between the gaze point and the hand pointing by models:
Each white square is the gaze point. Each black square is the hand pointing by models. (a), (b), (c) are the errors by the models which transform arm movement signals into equivalent eye movement signals. (c'), (b'), (c') are the errors by the models which transform eye movement signals into equivalent arm movement signals.
Fig. 5 The schemata of signal flow for sensory integration in visual reaching experiment

6. おわりに

視覚性到達実験においてみられる、人間の空間位置知覚における空間と運動感覚的関係の統合の特性を、信号空間の変換を学習する処理の特性として捉え、視覚性到達モデルに基づく学習のモデルを適用することで人間と同様の特性を生じる空間位置知覚のモデルを得た。

得られたモデルを生理学的観点から検討することによって、人間の感受性統合過程における信号処理の構造を明確にすることができた。その結果、主観的には普通的な感覚の統合において、その統合による結果をどの運動に反映するかによって異なる評価尺度に基づく評価機構が機能している可能性が考えられる。今後の実験においては、これを確認するために、同様の感受性統合条件において、異なる運動をさせてその違いを調べることを考えられる。

また本論においては視覚性到達空間について左右差空間の信号が調和的に供給されるものとして議論を進めたが、視覚性到達を左右差空間について独立に分離するモデルをたてることも可能である。このモデルの構造化は今後の課題である。

参考文献
2) H. Y. Helmholtz: Treatise on Psychological Optics, Optical Society of America, 2, 482 (1925)
6) G. Siemens: Experimentelle Untersuchungen über die taktile-motorische, Psychologische Forschung, 19, 7/9 (1930)
7) W. Blumenfeld: The Relationship between the Optical and Haptic Construction of Space, Acta Psychologica, 2, 126-174 (1937)
[著者紹介]

前田 太郎（正会員）
1987年、東京大学工学部計測工学科卒業。同年同大学産業技術研究所機械技術研究部に所属、ロボット工学プロジェクトが成立。1992年より東京大学先端科学技术研究センター在職。入間の知能特性とそのモデル化、神経回路モデル、ロボット工学、知能科学、コンピュータビジョン、ビジュアルセグメンテーションなどの研究に従事。電気情報通信学会、IEEE、日本ロボット学会、神経回路学会などの会員。

森 崎（正会員）
1984年、東京大学工学部数学科卒業。同年同大学院博士課程修了（工学修士）。同年同大学助手、隨年随に講師、教授、助手、助手、助教授、大学院講師。現在は、ロボット工学科バイオロボット工学講座、バイオロボット工学研究所センター長。現在の研究は、生物・人工知能とロボットの研究を行う。IEEE/EMBS学会、電気情報通信学会、IFAC、BMCなどの学会に所属。現在の研究課題は、人工知能、ロボット工学、バイオロボット工学、バイオロボット工学研究所センター長。