基礎論文

人間のノンバーバル情報受信精度の計測
—指さし情報受信精度の計測—

今井 朝子*1 関口 大陸*2 川上 直樹*2 畳 暟*2

Tomoko Imai*1, Dairoku Sekiguchi*2, Naoki Kawakami*2 and Susumu Tachi*2

Abstract: In this paper we present experimental results that show how people perceive other’s pointing gestures. We measured human perception of natural finger pointing under a face-to-face condition to find out how people understand other’s pointing gestures. The experiment revealed that people try to locate pointed position by extrapolating an orientation of an index finger of the pointer without using gaze information of the pointer even if the finger provides misleading information. Also, when a target is pointed using both eyes and a finger, people concentrate on the finger information even if people can locate the pointed position by watching eyes.

Key words: Nonverbal communication, pointing gesture, measurement, VR, shared space

1. はじめに

人は生まれてすぐにノンバーバル・コミュニケーションを始める[1]。成人してからもノンバーバル情報は重要な役割を果たしており、メッセージの65％以上はノンバーバル情報だと報告されている[2]。そのため、コンピュータ・グラフィックス、実写画像、ロボットなどを使ってノンバーバル情報を表すする研究が進められている[3][4][5][6]。現在、ノンバーバル情報を遠隔地に伝える方法として普及しているのはテレビ電話であるが、発信者と受信者がノンバーバル会話をする際に参照する、共通の参照先が存在しなかったり、ゆがめられたりするために、その効果は電話とあまり変わらないことが指摘されている[7]。そのため、VR空間内で人と人とのコミュニケーションを支援する場合にはパーソナルな共有空間を作ることが多い。共有空間の作り方については、様々な方法が考えられているが、決定的な解はまだ得られていない。

理想的な共有空間とはどのようなものであろうか。実空間に存在する人間の会話に再現することが目的である場合は、対面の状態が理想的な状態の1つであると考えられる。対面の状態を理想とする場合、技術を介して共有空間へ向けられるジェスチャーを見た人は、対面の場合と同じ反応を示すのが理想である。そのため、人が対面でノンバーバル情報を受信した場合に示す反応を定量的に測定しておけば、遠隔の実空間どうしを結んで作られた共有空間が理想的なものであるかどうかを評価することが可能である。本研究では、様々なノンバーバル情報の要素のうち、特に指さしを着目して実験を行った。

指さし動作の送信者に関する研究では、指さしを行う際には、利き手を使って指の位置と向きを決定しているという報告と、対象物に近い順の眼を使って決定しているという研究結果が報告されている[8][10]。指さし動作の受信者に関する研究としては、宮里らは手と目を用いた指さし動作の知覚に関する実験を行っている[3]。この実験では対面で人間の上半身を提示して指示動作を行った場合と、モノスコピック画像で同じ人物の上半身を提示した場合の知覚の評価実験を行っている。その結果、横18cm、前後20cmの間隔でターゲットが配置されている場合には対面での正答率は71％、2次元実写像の場合は30％であると報告している。しかし、18cm以下の精度の研究と、被験者が何を主な手掛かりとして指さし動作を知覚しているかについての研究は行われていない。

本研究では（1）人が共有空間へ向けられる指さし情報どの程度正確に（2）何の手掛かりにして知覚しているのか（3）どのような個人差があるのかを調べた。そのため、手と手を使った指示の知覚実験、手のみを使った指示の知覚実験を行った。第1の実験の目的は、人に近いエージェントを画像やロボットを使って表現した場合に望める効果と、その自然さを評価するための指標を得ることである。第2の実験の目的は、人に近いエージェントを研究
する上で、何を重視すれば良いのかを調べることである。そのため、手のみを使って指示した場合の知覚結果、第1の実験の結果、既に報告した眼のみを使って指示する実験の結果を比較し、被験者が情報を受け取っている主な手掛かりを調べた[9]。また、個人差についても調べた。

2. 眼と手の両方で指示する実験

2.1 実験装置の概要

以下では、指さしを行う人を指示者、それを見る人を被験者と呼ぶ。指示者は日本人女性1人で、図1に示すように箱にあてた窓から机の上に置かれたターゲットを指さした。箱にあてた窓の大きさは、30.7cm×45.0cm。ターゲットは、1cm間隔の格子状に配置した2160個の点で、55cm×40cmの大きさのステンレス板に描かれていた。

各々の点には1から2160までの番号を振って、指示者はその2160個の点の中から、100点をランダムに選んで指示した。番号は指示者から見て左から右へ、奥から手前に1から2160の順に振った。ターゲットに乗せた手の高さは71cm、指示者の顔での照度は3200lux、ターゲット・ボード上の照度は235luxであった。視線指示者の顔には影ができないように光源を設置した。

被験者は、指示者の130cm前方に座った。実験開始前に指示者と被験者の眼の高さを114cmに合わせたが、机の上を指さす動作と、それを見る被験者の状態をなるべく自然に再現するために、指示者と被験者の頭部は固定しない条件とした。

図1 眼と手を使った指さし実験の実験環境

2.2 被験者

被験者は基準視力が正常な20代の日本人女性2名、日本人男性3名、フランス人男性1名の合計6名であり、指示者とは顔見知りであった。また、指示者がターゲットを指示する準備をしている間は、眼を閉じる条件とした。

2.3 指示者

指示者は1名で視力は両眼で0.7であった。また、指示を行う際には、両眼を開けて右手を使って行ったが、指示の位置は利き眼である右眼を使って決められていた。使って行う眼を調べる際には、ターゲットを指示した後に片眼つつ閉じ、どちらの眼を閉けたときに指示がターゲットと重なっているかによって調べた。また、指示の位置を、眼とターゲットを結ぶ線上に置く指示方法は一般的であることが報告されている[10]。右眼を利き眼としている3名について指示方法を調べたところ、指示の位置は眼とターゲットを結ぶ線上にあった。ここでは、あるターゲットを指さしてもらい、自分の指示がそのターゲット上にあるかどうかを報告してもらうことによって指示の方法を確認した。

本報告では指示者の下での、指示知覚の指示方法依存性の傾向を調べることを目的としたため、詳細な指示そのものの計測は行わなかった。しかし、更に詳細に指さしに対する、受け手の知覚精度の研究を行うためには指示の精度も知る必要であるため、今後、計測する予定である。

2.4 実験手順

実験は、カーテンを閉めた室内で蛍光灯をつけて行った。指示者は、照明が調整された室内のカーテンから、あらかじめランダムに選ばれた番号に従って指示した。被験者は右手に並んで置かれており、1から100までの番号が振っているピッタを1つずつとり、指示者が指示していると感じた点にピット刺していた。

2.5 実験結果

被験者がどのように相手の指示をしているかを知覚していたかを示すために、被験者が平均としてどちらの方向に視覚していたかを図2に示す。横軸Xは、指示者からの左右の距離をcmで示しており、Yは指示者の中心、負の左側、正の右側である。縦軸Yは、指示者の正面方向への距離を指示者の位置を原点としてcmの単位で示している。
ここで、被験者の番号 \(i (i = 1, \ldots, 6) \) と \(j (j = 1, \ldots, 100) \) を刺 激に対する知覚結果を

\[
\bar{r}_{\text{error}} (i, j) = (x_{\text{result}} (i, j), y_{\text{result}} (i, j))
\]

（1）

指示者が指示した点である、指示先の位置を

\[
\bar{r}_{\text{stimulation}} (i, j) = (x_{\text{stimulation}} (i, j), y_{\text{stimulation}} (i, j))
\]

（2）

と表記し、エラー・ベクトル \(\bar{r}_{\text{error}} \) を次式で定義する。

\[
\bar{r}_{\text{error}} (i, j) = \bar{r}_{\text{result}} (i, j) - \bar{r}_{\text{stimulation}} (i, j)
\]

（3）

\(\bar{r}_{\text{result}} (i, j) \): 被験者の \(i \) 番目の刺激に対する知覚結果

\(\bar{r}_{\text{stimulation}} (i, j) \): 被験者の \(i \) への \(j \) 番目の刺激

\(\bar{r}_{\text{error}} (i, j) \): 被験者の \(i \) 番目の刺激に対するエラー・ベクトル

図 2 で定義するエラー・ベクトルの平均値

\[
\bar{r}_{\text{error}} (j) = \frac{1}{6} \sum_{i=1}^{6} \bar{r}_{\text{error}} (i, j)
\]

（4）

を示した図である。ベクトルの長さは、ベクトルの起点位置を示した際のエラー・ベクトルの絶対値の平均値を表している。図 2 から、被験者は指示した方向を左方に揺れて経験していることがわかる。

図 4 エラーの \(x \) 成分と \(y \) 成分の絶対値の平均値: \(x_{\text{averageError}} \) と \(y_{\text{averageError}} \)

個人個人のデータを見ると、明確な傾向は見られない。被験者の \(2, 3, 5, 6 \) は指示先の \(x \) 成分を \(y \) 成分よりも正確に知覚しており、被験者 1, 4 はその逆である。ただし、被験者 3, 4, 5 の \(x \) と \(y \) 成分の結果の間には、統計的な有意差はないと考えられる（\(t(99) = 0.55, P > 0.05 \), \(t(99) = 1.74, P > 0.05 \), \(t(99) = 1.77, P > 0.05 \)）。また、全被験者のデータについて \(t \) 検定を行ってみても有意な差が見られないことから、知覚の難しさの方向依存性はほとんどないと考えられる（\(t(99) = 1.27, P > 0.05 \)）。

さらに、知覚の傾向を調べるために（7）に示すようにエラー・ベクトルの \(x \) 成分と \(y \) 成分を、図 5 にプロットしてみると、図 3 から予想される通り、被験者 14 が指示先の \(x \) の負（指示者の左側）の向きに揺れていて定的に示されている。被験者ごとに、エラー・ベクトルの \(x \) 成分の平均値と 0 の差を検定すると、全ての被験者の結果は統計的に有意な差が見られ

\[
x_{\text{error}} (i) = \sum_{j=1}^{100} (x_{\text{result}} (i, j) - x_{\text{stimulation}} (i, j)) / 100
\]

のように被験者ごとに平均して図 3 にプロットしてみる。
\[y_{\text{error}}(i) = \frac{\sum_{j=1}^{100} (y_{\text{result}}(i, j) - y_{\text{simulation}}(i, j))}{100} \] (7)

\[x_{\text{error}}(i): \text{エラーのX成分} \]
\[y_{\text{error}}(i): \text{エラーのY成分} \]

図 5 眼と手による指示の知覚の変化の傾き

2.6 眼と手を使って指示する実験の考察

眼と手の両方を使って指示した場合、それを見る人は常に左にずれて知覚していることがわかった。このずれはなぜ生じたのであろうか。図 6 に示すように、指示者は右眼、右指先を通るベクトルをターゲットに向ける。

図 6 された位置の知覚方法の検証

もし被験者が、同じように右眼から右指先を通るベクトルを引いていた場合には、図 5 のように常に左へ傾くことは考えにくい。また、図 6(a) (b) のように、左眼や左の眼の中央から、指先へベクトルを引いている場合には、常に左に傾くということとは、ベクトルの端点が右側よりも左側になるわけではない。このことから、被験者は指示者の眼を手掛かりとして使っていたことが考えられる。また、人が話題の対象を指示すると、それを見ている人は指示している人の眼は見ず、指示している人の同じ視点位置から指示者の手を見ようとすることが観察されていることから[11]、被験者は手の形を主な手掛かりとしていたことが考えられる。以下では、被験者が指示を認識する際に、主に使っている手掛かりを確認するための実験を行う。

3. 手のみを使って指示する実験

3.1 実験装置の概要

実験系は、図 7 に示すとおりで、指示者の解答の大きさが 30.7 cm×12.0 cm 以下は、眼と手の両方で指示する実験と同じである。この解答の大きさでは、指示者はターゲット全てを見渡して指示することができるが、被験者は指示者の顔を見ることはできない。

被験者は、眼と手の両方で指示する実験に参加した被験者と同じであり、学習の効果を小さくするために眼と手の実験終了からは 1 週間以上の間を空けた。また、指示者も眼と手の実験と同一とした。

図 7 手のみを使って指示する実験の環境

3.2 実験結果

手のみで指示した場合の実験結果のエラー・ベクトルを 6 名について平均してプロットしたものを図 8 に示す。また比較のために、図 9 に眼のみで指示した場合も示した。

図 8 手のみで指示した場合のエラー・ベクトル
図 9 眼のみで指示した場合のエラー・ベクトル

図 9 は、著者らが同一の指示者と被験者の条件で行った実験のデータをプロットしたものである。（実験の詳細は既に論文で述べた[9]。）眼のみで指示した場合、左右非対称な偏りは見られないが、手のみで指示した場合には、眼と手の実験結果と同じように周辺が左方に偏っていることがわかる。

更に、図 10 でエラー・ベクトルの x と y 成分を比較すると、眼のみで指示した場合と、手のみと眼と手の両方を指示した場合の実験結果は、異なるグループに属しているように見える。全被験者のデータに対して有意水準 5%で t 検定を行ってみると、エラー・ベクトルの y 成分のデータについては、手のみで指示した場合と、眼と手で指示した場合の実験結果の平均値の間に、統計的に有意な差がないことがわかった (t (599) = 0.208, p = 0.05)。

図 10 指示方法の違いによる測定結果の差

更に、このエラー・ベクトルの y 成分に見られる「手ののみ、眼と手の両方を使って指示した場合の実験結果に統計的な有意差は見られない」いう傾向の個人差を調べるために被験者毎のエラー・ベクトルの y 成分を図 11 にプロットしてみると、全ての被験者が眼と手の両方を使った指示を、手のみによる指示に近いと知覚していた。t 検定からも被験者 2 以外は、両者のデータの間には統計的に有意な差がないことがわかった。このことから、被験者は手に指示先を判断していたと考えられる。また、眼のみで指示した場合と、眼と手の両方を使って指示した場合のエラー・ベクトルの大きさの間に有意差が見られないことから、眼に手の情報を付け加えても、指示の精度はほとんど向上しないことがわかった。

3.3 手のみで指示した実験の考察

被験者からは「眼と手の両方を見て指示先を判断した」というコメントを得たが、実験の結果、実際にはほとんどの情報は手から得ていたことがわかった。同様の傾向が、6 名中 5 名の被験者について見られたことから、眼に手の情報が付与されると人が手を見てしまうという傾向は個人差を超えた強い傾向であると言える。また、手の情報を加えても指示の精度は上がらないことから、極端なインタフェースの指示動作合成の研究を行う場合、指示の正確さを高めるためには、眼に手を付け加えても、本実験と同じ条件のもとは大きな改善は見込まれないと考えられる。しかし、自然さを追求するために、手動作をかる場合に、人は手に注目してしまうため、手の形や動きを正確に表現する必要があるであろう。

実験の結果から、被験者が手の情報を主に使っていることがわかった。そこで被験者が手のどの部分に着目しているかを調べるために、被験者の眼の位置と、指示者の真横にカメラを設置し、指と被験者がピントを刺した位置の関係を撮影した。図 12 ではカメラは指示者の右横に設置し、図 13 では被験者の眼の位置に設置した。本撮影では、影をなくすために設置した照明は、撮影の妨げになるために取り外した。また、第 1 の実験の際には窓から外へは指が出ないように指示したが、今回は図 12 に示すように少し指を出して撮影した。画像を撮影する際には、あらかじめ指示者が指示した点と被験者が回答した点にピントを刺し、実験の状況を再現して撮影を行った。

図 12 に示すように、指示者の右眼、指先、指示者が指
した点 i) を通る線と、指示者の右眼、指示先、被験者が知覚した点 ii) を通る線を比較してみると、指示者は眼、指示軸、指示者が指した点 i) を通る線上に指示先を置いて指示を行い、被験者は指の向きを延長したベクトルを使って知覚していたことがわかる。また図 13 より、知覚結果が指示者の左 (Y 軸方向の負) に向かって偏っていた原因が、被験者が指示者の指を見ていたためであることもわかる。

4. むすび

本研究では理想的な共有空間を遠隔地に構築する際の指針を得るために、人が共有空間を介して送受信する情報を 1 つの方法として実験を行った。具体的には (1) のような共有空間へ向けられる指さし情報をどのように確立 (2) 有何を手掛かりにして知覚しているのか (3) どのような個人差があるのかを調べた。その結果、(1) 眼と手の両方を使った共有空間への指すを、人と约 8cm 程度間隔で知覚していること、また、眼だけでなく他の指すと手の両方を使って指すをしてもわかりやすさはほとんど変わらないこと (2) 指示者は眼、指示先、指示先を通るベクトルを用いて指の位置と向きを判定するが、それを見る人は眼の情報は使っていないこと、人は手のどちらでも特に指の位置と向きから指示先を判断していること、(3) 間違えの大きさには、5.5 度から 9.8cm の個人差の聞きがあるが、主に指示から情報を得ことは 6 名中 5 名に共通しており、強い傾向であることがわかった。

以上の結果から、遠隔地へ指示を行うシステムを設計するのための我々のような指針が得られた。

1) 対面と同じように眼と手を使って指さしをすると、その情報はある振れを持って知覚されるため、振れを考慮する必要がある。そのためアシメを合成する際には、人間の眼と手の関係を再現させ、指を指示先に向けると指示の精度が上がる可能性がある。

2) 人間は眼と手を同時に見ることができる状態に置かれても、相手の指示を理解しようとすると手を指すため、手の情報は正確に指示する必要があるが、目と手の関係は手の情報ほどには厳密に指示する必要がない。試しに、人の注視先は会話の状態に応じて変わるため、主視観は対面にいる相手の指示を理解しようとする際にのみ適用可能である [11]。

謝辞

本研究は独立行政法人科学技術振興機構の政策の創造研究推進事業の一部として行われた。

参考文献

[9] 今井、関口、福田、川上、著: “ユーザの言葉からエンジニアの言葉へ利用者のニーズを定量化する
きの視線認識測定”、ヒューマンインタフェース学会研究報告集、Vol. 5、No. 2、pp.13-18、2003。

(2003年8月13日受付)

【著者紹介】

今井 朝子（学生会員）
1998年イリノイ大学大学院情報工学専攻修士課程卒、Pacific Interface社を経て、現在、東京大学大学院工学系研究科先端工学専攻博士課程在学。ユーザの視点に立った技術の設計指針を示す研究に従事、2003年より（株）ユーティット勤務。1999年APCC/OECC’99 Excellent Paper Award。

関口 大陸（正会員）
2001年東京大学大学院工学系研究科博士課程修了、工学博士（工学）、同年より科学技術振興事業団研究員。
2002年東京大学大学院情報理工学系研究科特任助手となり現在に至る。ネットワークロボティクスおよびテレグジスタンスに関する研究に従事。

川上 直樹（正会員）
平8東工大・理工・電気電子修士課程修了、平11東大・工・先端工学修士課程修了、工学博士、同年同大学院・工・計数工助教、平14同大学院・工・計数工講師。パーセントリティの研究に従事。日本パーセントリティ学会会員。