感覚代行装置——研究の現状と将来

1. はじめに

「失われたものを数えるよりも得られたものを数えよう」という言葉を踏まえ、目の耳の不自由な人々は、懸命「新しい感覚器官の世界を求めてきた」と努力を重ねている。

一方で、脳刺激研究、マインドフルネス等のエレクトロニクスの進歩をもって、それらの現状感覚器官をもとに利用して失われた感覚を活用する機会に研究が進められている。

このような感覚供与 (sensory substitution) あるいは痛覚隔断 (sensory prosody) においては、通常、例えは視覚の場合には非視覚的、聴覚の場合にはマインドフルネスといった視覚感覚対応する人工ディプロネス (ミント) を用いて、文字の入力も手間することなく、それらの入力に特別に適応した音声を発せ、その様出される音声を適当な音楽形態に再構成することによって示す。

第1図にその共通法を示してある。さらに、感覚器官をもって解を求めるのが、ある、感覚器官をもって解を求めるのが、ある、感覚器官をもって解を求めるのが、ある、感覚器官をもって解を求めるのが、ある、感覚器官をもって解を求めるのが、ある。

2. 非音覚的代用装置

全国40万人、あるいは盲音の解釈に、盲音や音声を通じて読み解くといったコネクションと、音楽的音楽性をもって解を求めるのが、ある、盲音や音声を通じて読み解くといったコネクションと、音楽的音楽性をもって解を求めるのが、ある。
改修電子と生体工学

それによっても、音能義言記。パソコン、あ
いちらの書をよに、占いにいかがか表現するこ
とが得けたそうだ。そのような語は国際的な無性に応えるも
のとして、J.C. Ettas(?)の開発を実用化した、Tel-
sensory Systems と(TSI) がオプションがよくら
れて全世界で約 5,000 台が利用されている。

その装置は、無事的にも、平易な文字を単純な使用に
より、その文字が同一の装置のニーズであると同様に
する文字を、4×4 のマトリックス測定精度に従って電流す
る。質は文の一般にそれを行い、それを測定し改変する文字を
画取りする。さらに同居品を利用してデータレコードの
LED、デジタル鍵を踏んだり、オーシャンズの波形を読み取るしたりすることも可能です（第 2 項）。

第 1 図 Otsanom による文字の放射

約 50 時間の音能義言記が必要で、その後数か月の培
養をつけると、次いで 1 分間以内 40 ~ 60 色の放射
が可能である。日本語の場合は、ひらがな、カ
メラが等しく、音能義言記で作られている 6)、漢
字については後述し、さらにその音能義言記の
研究が必要である。なお、無音的な言語としては、米
利の文 10 万字のに優発生器を用いた音能義言
記の研究がある。

文字を変更するも、C. d'Albe の Otsanom(6)，C. O. Smith の Vissonom(2)，Stereotone(11)、M. F. BodoのLexiprobe(11)、和気
らの装置(3)などがある。これに、ライセンスやフ
ジ型メモを用いて文字を放射し、そのデータに
あたっては測定装置や測定を巧みに変化させて、文字により
外のデータを放射する有意のある音を放射するものに
したもので、Vissonom、Lexiprobe で 40 音、Stereotone で 50 音が度をされているが、いずれ
音放射型の少ない。その元を電子は、今後の研究に待
つことも多い。

上記の装置は音を利用していながら、いわば無音義
言の要領であるがってである。言語は本来が文
伝わるメソディアであるわけで、読み取られた文字が音
声に変換されて、文字単位で発現される音義言記することはさておきで望ましい。

次の装置のための音義言記が行われているためで
ある。作り、ただし、ライセンスの計器結果で
音響として発現する装置が TSI の SPEECHPLUS と
して開発されている。

最終的な目的としては、個人用の◀装置として、助
成した音義言記の利用、文字放射検査で必要となり
者として、音義言記の計器結果に約 3 分間の局所
から音放射する方法が進展している。

2-2 言語測定装置

音の単音放射（independent travel）への可能性は
高い。これを可能にするための二つの因子として、orientation と mobility がある。
前者は、ある時間での自己の位置を知ることで、後者は、人間が音放射した音がיפ
ある音放射の間隔である。これは、音放
換が互いに関連している。それ

技術的に考えると、新しい内耳の音能義言記の問題と
音能義言記および廃棄の問題と解決の一つに従来
の自己による音を放射し、それについてスピーカ
クスクスのない音をできるだけ放射し、この放射
声を観察することにより標識から音を放射し、音

・実験の結果は、Cranberg(12) によるとい
な光を放射していると放射音義言記の研究を
行うものである。最近、Gaas Line Rea(600
A) で、音を放射することにより幅からelerometer で
音、ビーマーのない音をできるだけ放射し、この放射
声を観察することにより標識から音を放射し、音

National Research Council の指導研究開発委員
会で興行制御が行われている。

メニーノ研究開発委員会(POA) では、レーダー粒子
を用いて探測を用いたレーダーを開発
adiated 約 100 色の放射で発熱し、その放射
音義言記を知ることをめらし、放射音義言記が

音義言記を調査した音義言記の複数に発生
その放射音義言記から音義言記の関係をつらべて発明

昭和 54 年 6 月
第3図 ガーディアンによる障害物の検出
する。Kayeは200A H群波部による障害物検出部出力信号を巧み
た回路で検出し、逆送電信号を振幅にした電気波障害
検出を開始した（第4図）。これはSONICGUIDEとし
て商品化されているもので、第5図の実験で示されてい
る。さらに、周囲に障害物の変化を検出した電気波を検
出し、これを視覚で指示した反射波の形状の変化を
求める。この反射波は障害物までの距離に比例する変化
としていて、視覚的に障害物の位置を示すため、そ
れを音響として覆3面に示すように観察者と内
蔵された対のマイクから音をピーム状として
四面に示す。

第5図 障害物検出の検出・指示状態変動現象
もし障害物がこの装置の正面前にあれば、音波の必要
電力によるミラーは周波数、同強度であり耳音は共に
とらえる電気音が示され、障害物が障害があると。
その気を聴くほど、障害物が障害であると、その音
が増幅となる。さらに、反射波の音のうち音の
量を音で示すと良しとする。139同のオーディオ系の
音量を元データとしたシリコンデッキは行わられており、
さらに全て世界にフィードバック装置を設け、195年に167
項目にわたるアンケート調査を行い。その結果、75
名の回答を得たが、その内75%がこれからの音響を
得る設計であったとされている。

補償放熱装置内の事故に対する事故の防護距離を
把握して警告を適えるobject detectortの考え方は、
さらに事故放熱のない場所で発生することがあるとして
いうclear path indicatorの観点に留意してこら
れている。この考え方は次の、第二次大戦で失敗し、後に
M.I.T.の感光変圧器製造業者セーグ（SARCO）
の開発したDuplexを「障害物をつかむ不
同の体を通ることのできる大きな障害物のない安全
なトネンドルを指す」という意味を付与される
というといわれる。

この場合に基づいて言いかけて求めるPath
searcherが生まれた（第6図）。この装置は音速の
正面上のドアの大きさのスペースに障害物があるか
ないかを音波を利用して判断し、ならかも防止存在のある
開っている音を示すようにするものである。ただし、
なお徽重なことを確認しておく必要はありと考えられ
ない。

参文 1 Radioa 0 The Pathsearcherの発達
その他の音波利用の装置としては、Mowat Sonar
Sensor、Hablot 社の Siemens 音響、Noragham
Ostacle Detector、わが国では、兵装部の研究25、
実物電磁のスキャット、現地実用のノードなどが
ある。また、ソーラーを使用したものとしては、Mines
探雷、光学センサを用いたものとしてはイノウ大学
のCasscomat Tubeがある。

さて、運用内容をより幅広い制御装置の利用について、
例えば、音波電流にインピーダンスコントロールとした自動車
の車両制御装置のなどのラジオレディオトランスファー
として車両を刺激するという試みがあるが、環境
への影響が大きくするなどの理由から実用化しては
いない。実用化における利用の装車抑制技術をとくに重ね
るシステムに高めることで実現されることが期待され
る。

用途を音速を利用してできるところにおける一
つの発展がリレーショーンのクリレンスとして示された音速門
タクトイマップされており、進捗や、全国的な日目をカ
第7章 触覚フィードバック MEL/LOG MARK II
による視覚補助実験

2-3 視覚補助を目的とした研究

正常な視覚を、視覚障害に至る外因の対策に種類のある
障害を、対象者が再現出来ることより、空間の広がり
の中に物体を位置づけることが期待されている。そのよ
うな機関を持つ人の意識において視覚補助は可能であろう。

ここでは、脳の機能性に富んだ選択性を視覚として
皮膚を視覚の代用として利用し視覚現実を構築する方
法と、観る人の視覚情報を視覚情報
に伝える脳皮質を刺激することが目的である。

著者の最初の研究者は、スタジオの
研究の延長として 12×12 のマットでモンタージアラ
イカの方向を示すために、2.5 cm 四方の四角形のバブル
を脚として指を出し物体認識の研究を行った。(22)
Bisno は 2000 年、この方法は、視覚受容器を視覚外に比べて短く、
長方形の形状を用いた数値計測器、脳皮質
特に視覚系の分割 25 万点に拘わるとは及ばない
ことを示し、皮膚視覚の代わりに用いにこだわら
せて否定的であった。

一方、Bach-y-Rita からは、皮膚視覚を必要とするこ
とにより視覚が得られるのに無視の手間であると仮定し
ている。(23) これらの研究者は特有の Tactile Vision
Substitution System (TVSS) と呼ばれる、その役割の
もはやビニールによって強化され、それを、20×20 の
ドット正確な信号をとった、触覚用の足首の骨に組み込んだ
電気活性化装置により人間の脳に視覚視覚として提示する
システムである。500 Hz のコサインスフィアレ 8 万
ずつ 20 回の度で足首上に、それに相当する触覚
感覚を伝えることを測定している。

現在、レシダル・マットのメンバーやワークショップに
取付け、視覚障害者を対象にしている。最大 2×2 の
装置をさらに視覚補助システムとして提示する際に
使用し、 ללמודの視覚の刺激装置が開発されている。(24) 図、および
図、では、視覚が他の種類の装置を飛ばす、縦断視覚装置示
示装置などを試験開始している。(25) カメラをセンシング
すると、それに伴う一連のスイッチングが分かり、任意
ガードや各の設定が必要で、これにより物体の三
次元的な解釈を行い、1人の視覚を実現する
と報告されているが、顧客まえに記述の不完全で
定義的なデータはない。

人間の脳の視覚域の有無と電磁気刺激をえるある閃
光（phosphor）を感じることと、1929 年 Ewertz
により報告されている。(26) この発見を利用して Brind-
ley は、1968 年の脳に知覚を有する成人の視覚障害者
の症状を改善する方法を発明する視覚刺激を示すこ
とで視覚補助を行い多くのと新しいデータを報告した(第
9 篇)。これが著者のアプローチの開始点である。電
気刺激装置内側へ、視覚障害の視覚の外に取り入れられた受
受刺激装置であり、皮膚上に 80 個の位置の電極が配置
昭和 54 年 6 月
研究を行っているが、まだパッケージ情報が伝送される程度に近づいていない。

もちろん、まだ脳についてはあくまで未解決のところである。周囲の環境の全情報が伝送されるわけではない。

たとえば、今考えられるような、まるで脳はあくまで未解決のところである。周囲の環境の全情報が伝送されるわけではない。}

結論として、今後は脳をモデル化する研究がさらに重要であると考えられる。

8. 林澤直也, ぼんやりと

あらゆる侧面からの情報を取り入れた全情報が伝送される程度に近づいていない。

このため、今後は脳の情報処理機能を更に実用化する研究が必要である。
している情報、なるべくの方法で使用者が得る必要がある。

初期の研究では、手先に取り付けた位置センサや触覚センサの出力を機械的感動刺激に変換し、使用者の皮膚に示していた。MannはBoston Armのプロトタイプに基づく触覚フィードバックに関する多くの研究を行った。またAllesはフィードバックを利用して手先の首の角度を伝達する試みを行っている。

最近は橋掛性を観察する点で電気刺激を利用する方法が主流となっている。電気刺激に関しては、BergerらはPrierにより知覚的制御がわかる。Prierは手先の皮膚と関節をパルス電流刺激した電気刺激をもって皮膚表面に示し、それによる知覚制御の向上を図っている。

また、Rexwijkは前肢筋電位刺激を利用した電気刺激をとことん刺激に刺激を与えた電気刺激としてフィードバックする研究を行っている。

この手法や電気刺激の方法により伝達情報を表、皮膚表面電極を用いる方法のどちらかほぼ同程度ではあるが、電気刺激が触覚電流に変換して皮膚感覚を作ることが多いと貴重な周波数帯を有する。実験な主な問題は、手の部分と外部のエミュレータによる問題である。Rexwijkは、バイオフィードバックシステムとして触覚感覚を利用した3ヶ月間の生体内実験に成功しているが、完全に実用化するまでには至っていなかった。

5. 人間・装置・環境シミュレータ

感覚代わり装置の設計における問題点は、①内容の状況をいかにかから、②その内容のどのような装置を抽出するか、③それそれぞれの形で使用者に提示するかを明らかにすることであるが、既存の研究は②に関するもののみしかなく、その他の研究者のアイデアに依存しているのが現状である。

Mannは、外界の環境を、計算機内のモデルを利用して、その環境内での格子を実際の行動を起こさせ、その結果を何らかの状態を変換する。この状態を変換するには、人間・装置・環境シミュレータ、という形で示唆されている技術や情報処理を示すと、手続きを示すと有効であると通じることが期待されている（第10章）。

この人間・装置・環境シミュレータは、後代代わり装置
感覚代行装置——研究の現状と将来——

感覚代行装置の概念や開発の背景、最近の研究動向について述べ、特に音を体験する装置について詳しく解説している。装置の概念を明確にし、その可能性を示すために、様々な研究者からの報告が紹介されている。

特に注目すべきは、音を体験する装置の研究で、音波の形状を変換し、触覚を介して音波を体験するシステムがある。また、視覚を体験する装置の研究も進められており、拡大視野や測定距離を体験するシステムが開発されている。

しかし、感覚代行装置の開発にあたっては、多様な課題が残されており、今後の研究が期待されている。

