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Abstract-We present a method to control a manipulator with passive 
joints, which have no actuators, in operational space. The equation of 
motion is described in terms of operational coordinates. The coordinates 
are separated into active and passive components. The acceleration of 
the active components can be arbitrarily adjusted by using the coupling 
characteristics of manipulator dynamics. This method is also extended 
to path tracking control of a manipulator with passive joints. A desired 
path is geometrically specified in operational space. The position of the 
manipulator is controlled to follow the path. In this method, a path 
coordinate system based on the path is defined in operational space. 
The path coordinates consist of a component parallel to the path and 
components normal to the path. The acceleration of the components 
normal to the path is controlled according to feedback based on tracking 
error by using the dynamic coupling among the components. This in turn 
keeps the manipulator on the path. The effectiveness of the method is 
verified by experiments using a two-degree-of-freedom manipulator with 
a passive joint. 

I. INTRODUCTION 
The number of degrees of freedom of a conventional manipulator is 

equal to the number of joint actuators. Since the mass of the actuator 
of a serial-type manipulator is a load for the next actuator, the size 
Of the from the wrist joint to the 
base joint. As a result, the base joint must be equipped with a huge 
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Fig. 12. Real range image of a jumble of packages. (a) Raw : data including 
noise and outliers. Reconstructed biquadratic surfaces to maximal rectangular 
footprints. (b) Cylinder. (c) Rectanguler box. (d) All objects. 
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actuator compared to the load of the manipulator. In order to decrease 
the weight, cost, and energy consumption of a manipulator, various 
methods have been proposed for controlling a manipulator that has 
more degrees of freedom than actuators [ I ] .  However, these methods 
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require special mechanisms in addition to basic links and joints. In 
this paper, a method is presented for controlling a manipulator that 
has more joints than actuators without using additional mechanisms 
except joint brakes. 

The dynamics of a manipulator have nonlinear and coupling 
characteristics. When each joint is controlled by a local linear 
feedback loop, these factors result in disturbances. The elimination 
of such dynamic disturbances has been one of the major problems 
in manipulator control [2]-[4]. A design theory for a manipulator 
with neither nonlinearities nor dynamic coupling has also been 
proposed [SI. However, the effects of these disturbances are available 
to drive a joint that in itself does not have an actuator. Such 
dynamic characteristics are actively used in human handling tasks. 
For example, when a heavy load is handled, all the muscles of the 
human arm are not necessarily used. Some joints, e.g., wrist joints, 
are kept free, and the inertia of the load is utilized effectively. Such 
a dynamic skill will also be significant for robot control. Some robot 
control schemes that utilize dynamic coupling effects have previously 
been proposed [6], [7]. 

As a means of controlling a manipulator with more joints than 
actuators without using additional mechanisms, we propose control- 
ling passive joints by using dynamic coupling [8]. We developed an 
algorithm for point-to-point control of the manipulator and applied it 
to a two-degree-of-freedom (2-DOF) manipulator [9]. In this method, 
a manipulator is composed of two types of joints: active and passive. 
Each active joint consists of an actuator and a position sensor (e.g., 
an encoder). Each passive joint consists of a holding brake and a 
position sensor. When the brakes of the passive joints are engaged, 
the active joints can be controlled without affecting the state of the 
passive joints. When the brakes are released, the passive joints can 
rotate freely. The motion of the active joints generates acceleration 
of the passive joints via the coupling characteristics of manipulator 
dynamics. The passive joints can be controlled indirectly in this man- 
ner. The total position of the manipulator is controlled by combining 
these two control modes. Jain and Rodriguez independently proposed 
a similar technique to control a manipulator with passive hinges. They 
also developed an efficient dynamics algorithm using spatial operator 
algebra [lo]. 

When some of the joint actuators of a manipulator are exchanged 
for holding brakes with this method, we can build a lightweight, 
energy-saving, low-cost manipulator. We can take advantage of 
these merits by applying the method to simple assembly robots, 
control of redundant manipulators, etc. Space applications (e.g., 
space manipulators, expansion of space structure) may be feasible. 
This method can also be applied to failure recovery control of a 
manipulator [ 111. 

Control with the passive joints released is an essential part of 
this method. In [8] and [9], we controlled the manipulator in joint 
space. In this approach, a desired trajectory is assigned to the passive 
joints, and the motion and torque of the active joints is calculated to 
realize the desired motion of the passive joints. The motion of the 
active joints is determined by the desired trajectory of the passive 
joints and the dynamic coupling among the joints. Consequently, the 
motion of the tip of the manipulator cannot be prescribed. However, 
the position of the tip in operational space, e.g., Cartesian space, is 
usually important for practical manipulator tasks. It is necessary to 
control the path along which the tip moves if the manipulator is to 
avoid collision with an obstacle. 

In this paper, we extend our previous work on control in joint space 
to control in operational space. In Section 11, the control scheme in 
operational space is presented. The equation of motion is represented 
in terms of operational coordinates. The operational coordinates 
are separated into active components and passive components. The 

desired acceleration is generated at the active components, which 
are equal in number to the active joints, by using dynamic coupling 
among the components. This method is extended to path-tracking 
control of a manipulator with passive joints. A desired path is 
geometrically specified in operational space. The tip position of the 
manipulator is controlled to follow the desired path. In Section 111, 
path coordinates are defined as a kind of operational coordinate 
system based on the desired path. The path coordinates consist of 
a component parallel to the desired path and components normal to 
the desired path. In Section IV, a method for path-tracking control is 
described. The acceleration of the components normal to the desired 
path is controlled by using the dynamic coupling among components. 
This in turn keeps the manipulator on the desired path. In Section 
V, the effectiveness of the proposed methods is demonstrated by 
experiments using a 2-DOF manipulator with a passive joint. 

11. CONTROL IN OPERATIONAL SPACE 

A. Equation of Motion with Operational Coordinutes 
An n-DOF manipulator is considered here. The operational space is 

assumed to be n-dimensional. We assume T DOF of the manipulator 
are active joints. The remaining n - T DOF are passive joints with 
holding brakes instead of actuators. 

The equation of motion of the manipulator in joint space can be 
written as 

where 

joint angle vector, 
joint torque vector, 
gravity torque vector, 
Coriolis and centrifugal torque vector, 
inertia matrix, 
viscous friction matrix. 

The elements of U are rearranged as 

U =  [T' 01'. 

T E R' is the torque of the active joints, and the torque of the 
passive joints is zero. Accordingly, M and b are also rearranged and 
partitioned as follows: 

(3) 

where Ma E IRrX",Mp E R("-')X",b, E IR', and b, E Kin-'. 
The equation of motion of the manipulator is rewritten in terms 

of operational coordinates p E IR". We assume that the operational 
coordinates and the joint coordinates are related as follows: 

p = J9 (4) 

where J ( 0 )  E IR" '" is a Jacobian matrix. When (4) is differentiated 
with respect to time, we obtain 

p =  J l i + J @  (5 )  

If J is nonsingular 

= J-'(p - ie). 
Note that the manipulator has R DOF and is nonredundant. When 
the manipulator is redundant, matrix J is not invertible. One way to 
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invert J is the extended Jacobian method [ 121, in which auxiliary 
coordinates are added to the operational coordinates so that J can 
be inverted. 

The I' components of the operational coordinates, which should be 
controlled, are chosen and grouped as z. The remaining components 
are grouped as y. Here, p and H = J - '  are rearranged and 
partitioned as follows: 

(7) 

where z E m ' . y  E I R " - ' . H ,  E I R r t X ' .  and H , ,  E IR"x("-" .  
We define z as an active component and y as a passive component. 
The desired motion is assigned to the active components while the 
passive components are controlled so as to realize the desired motion 
of the active components. When (3) ,  (6), and (7) are substituted in 
( I ) ,  we obtain 

M,lH,k  + MilH,y  - M , , H J b  + b,, = T (8a) 
M,H,,Z + M p H p $  - M , H J i  + b ,  = 0. (8b) 

The equation of motion is represented in terms of the active and 
passive operational coordinates. Moreover, i t  is divided into (8a). 
which is related to torque of the active joints, and (8b), which is 
related to torque of the passive joints. 

U. Control in Operational Space 
The desired acceleration can be generated arbitrarily at components 

equal in number to the active joints. Control of the active components 
is given priority, and the computed torque method [2] is applied. 
It prescribes a desired trajectory for the active components and 
generates the motion of the passive components in order to realize 
the desired trajectory of the active components. 

The desired position Z d ,  velocity xd, and acceleration ?d of the 
active components are obtained from the desired trajectory. The 
following PID control is applied to suppress the tracking error: 

5;  = ?d + Kv(&d - Z) $- Kp(Zd - 2) + b'; ( z d  - 2) t / f  (9) J 
where K,.  K p .  and K; E IR' 

When measured values of the joint angle and velocity are substi- 
tuted in H and H of (8a) and (8b), each component of M .  H .  J .  and 
b is determined. If 2; of (9) is assigned to the acceleration Z of the 
active component 2, (8b) can be considered as a linear equation with 
regard to y. If M,,B,,  E l R R ( " ~ " i x ( " - ' i  is ' nonsingular (and hence 
invertible), (8b) can be solved uniquely as 

are the diagonal gain matrices. 

. .  
y =  ( M , B , , ) - ' ( - M , H , , Z ; + M , H J H  - b I J ) .  ( I O )  

The nonsingularities of J and M , H ,  are essential for this method. 
The singularity of M,,H,, (dynamic singularity) will be discussed 
later. 

When ( I O )  is substituted in (8a). the torque T to realize the 
acceleration 2; can be determined. 

When we apply this torque T to the active joints, we will obtain the 
acceleration 2;. The active components are guaranteed to converge 
to the desired values if K,. K p ,  and Ki are chosen such that all the 
poles of the feedback system are located in the left-half plane. Fig. 1 
represents a block diagram of the control system. 

alculation of eq.( 1 l)p Active Joints 

Passive Joints 
0 

4 1  

x /Kinematic ~ a ~ a l m i i  

Fig. 1. Control system in operational space 

C. Function o j  Brakes 

The brakes of the passive joints are used to set up the initial 
conditions. When the brakes are engaged, the manipulator has r 
degrees of freedom. The passive joints are fixed, and the angular 
velocity is zero. The number of the active components is r .  The 
active components are represented by a kinematic equation including 
the angle of the active joints. Therefore, the initial angle and angular 
velocity of the active joints that realize initial position zu and initial 
velocity ZO of the active components can be obtained by inverse 
kinematics. 

The initial conditions of the passive components cannot be set 
up by the active joints alone. If the initial position of the passive 
components needs to be set up, it is necessary to use the point-to- 
point algorithm of (81. The initial velocity of the passive components 
is determind by the initial velocity of the active components. 

The final conditions of the passive components are determined 
by the control hysteresis of the active components. Even if the 
manipulator is at rest in the initial condition and the final velocity 
of the active components is controlled at zero, the final velocity of 
the passive components is generally not zero. In the experiments, we 
forced the passive joints to stop with the brake. In this method, the 
passive joints cannot stop at an exact angle because of the time delay 
in the brake operation. It is necessary to switch from operational 
space control to joint space control and to stop the passive joints 
before braking if the purpose of the control is positioning. 

D. Dynamic Singulurig 

The conditions required for this control method are as follows: 

1 )  Matrix H can be obtained. (Jacobian matrix J is invertible.) 
2) Equation (8b) has a unique solution. ( j i  is determined uniquely.) 
3) In ( I 1 ). 7 and 2; show one-to-one correspondence. 

Condition 1 means that the manipulator must be kinematically 
nonsingular. Condition 2 is equivalent to the nonsingularity of matrix 
M,,H, ,  (det[M,H,] # 0). Condition 3 is the nonsingularity of 
matrix { M ,  - ~ ~ ~ H , ~ ( ~ ~ H ~ , ) - ' M , } H ~ , .  Conditions 2 and 3 are 
mathematically equivalent. The acceleration of the passive compo- 
nents cannot influence the acceleration of the active components 
in the positions where M , H ,  is singular. The acceleration of the 
active components is determined by the position and velocity of the 
manipulator. regardless of the acceleration of the passive components. 
Therefore, this method is difficult to use near these dynamic singular 
points. 

The condition of dynamic singularity (tl(.t[M,H,] = 0) provides 
one degree of constraint. For example, when a manipulator has 3 
DOF, the dynamic singular points compose a surface. The manipu- 
lator cannot pass through this surface in the proposed method. An 
algorithm to solve this problem is necessary. One way to solve this 
problem is to use the brakes and fix the passive joints. Another 
solution is to switch the choice of the active components. The inertia 
matrix M is generally nonsingular. Therefore, the rank of matrix 
M,,  is I I  - r .  Singularity of M , , H ,  depends on H,. If the active 
components are chosen in a different way, the manipulator can pass 
near the dynamic singular points. (Of course, control of the former 
active components is compromised in this case.) 
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Fig. 2. Path coordinate system. 
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in terms of path coordinates. Note that there exist lots of path 
coordinate systems for one desired path. In the case of this example, 
a spherical coordinate that has its origin at the center of the desired 
path can also be a path coordinate. 

111. PATH COORDINATES 
In the following sections, a method for path tracking control 

is presented. A mathematical description of the desired path is 
considered at first. The desired path is geometrically specified as 
a continuous curve in operational space. It is not associated with 
a time variable. In minimum-time trajectory planning problems, this 
type of path is often parameterized by a path parameter [ 131-[ 151. The 
position of a point on the path is represented as a vector function of 
a scalar parameter. When operational space is n-dimensional, a point 
q E IR" on the path is represented as 

(12) 

where s is the path parameter. q ( s 0 )  is the start point of the path 
and q ( s f )  is the end point. s can be considered as a distance along 
the path. Since s is a scalar, this method can represent a point only 
on the path itself. 

Real-time path tracking control is considered here. If the manip- 
ulator deviates from the path due to disturbances, feedback control 
should force the manipulator to return to the path. Therefore, points 
not on the path as well as points on the path should be represented. 
Furthermore, the tracking error should be measured. We propose the 

!f = Q ( S ) , S O  I s I Sf 

IV. PATH-TRACKING CONTROL 
In this section, the path-tracking control scheme is described. The 

control scheme is based on the path coordinates. First, the equation 
of motion is represented in terms of the path coordinates. Then 
the path-tracking control scheme with feedback is proposed. The 
initial conditions of the desired path are discussed. Path tracking with 
multiple passive joints is also considered. 

A. Path-Tracking Control 
Both operational space and the path coordinate space are assumed 

to be n-dimensional. It is assumed that the manipulator also has n 
DOF, and it consists of n - 1 active joints and one passive joint. 

We propose a control method in which the manipulator tracks the 
desired path defined in Section III. In Section 11, it was shown that 
the components equal in number to the active joints can be active 
components and controllable. The number of active joints of the 
present manipulator is n - 1. The number of components of the 
path coordinates is n, and the number of components z normal to 
the path is n - 1. Therefore, z is treated as an active component and 
s is treated as a passive component. 

From (16), the operational coordinate q and the path coordinate p 
are related as q = q(p). The operational coordinate q is calculated 
by forward kinematics, q = q ( 0 ) .  When 

J z  = J I ,  J Z  E RnX" aq 
Ji = ;3;, concept of path Coordinates as an extension of the path parameter. 

A curvilinear coordinate frame is defined in operational space. The 
coordinates are composed of a component s along the path and 
components zlr  is normal to z3 if i # j .  
These coordinates are called path coordinates (Fig. 2). A point 
p E IR" represented in terms of the path coordinates is 

. , znPl normal to S. 
the Jacobian matrix J ( 0 )  E IR" '" of path coordinate p for joint 
coordinate is represented as 

j = 2 = j - 1 j  
a0 *. p=[zl,...,zn-l,s]T=[Z= SI=. (13) 

2 = zd(constant), SO 5 s 5 sf (14) p = J8.  (17) 

Consequently, p and 0 are related as The desired path is represented as 

in terms of the path coordinates. The desired path is also represented The equation of motion in joint space is written as 
as 

M ( 8 ) i  + b ( 0 . i )  = U .  

The equation of motion of the manipulator is rewritten in terms of 
is composed of the active joint 

torque, 

in terms of the operational coordinates. Equation (15) can be extended 
to represent all points in operational space. A point q in operational 
space is represented as a vector function of path coordinate p. 

E IRn. The joint torque vector 
E Rn-l, and the passive joint torque(= o). 

U = [P O]? 

Example: Operational coordinates: Cartesian coordinates (n = 3). 
Desired path: A circle of radius T O .  centered at [TO, yo, 201, parallel 
to the TY plane 

4 s )  = [TO cos(ws)  + L O , T O  sin(ws) + YO, 301. where 

Path coordinates: Cylindrical coordinates 

q(P) = Q(bl, J2,SI') 

- - [zi cos(ws)  + 10. x1 sin(ws) + yo..rZ]. 
The desired path is represented as 

2 = [zl..c*]T = [TOGO]T 

M =  [E:]. b =  [!:I, J - ' = H = [ H ,  E,] (21) 

and Ma E . M ,  E I R i X n , b a  E IRn-',b, E IR',H, E 

In order to keep the manipulator on the desired path, the z 
components normal to the path should remain constant at 2d. The 

. and H p  E W X 1 .  R n  x (n -  1) 
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I 

Fig. 3. Path-tracking control system. 

acceleration 2; is generated to adjust z to Z d .  The following PID 
control is applied: 

"2 + K p ( Z d  - 2) + K ,  ( Z d  - Z )  t l f  (22) .I 2;= - K  

where K,.Kp, and K ,  E l R ~ r ' - " x ( ' t - ' '  are the diagonal gain 
matrices. z and Z are the measured values of the position and velocity 
of the z components. 
2; calculated from (22) is substituted in 2 of (20a) and (20b). 

If M p H ,  is not equal to zero, the torque T to realize 2; can be 
determined as 

T = { M m  - M"H,(M,H,)-'M,}(H,i; - HJfi, 

+b" - Mctffp(M,lHp-'hb. (23) 

When we apply torque T of (23) to the active joints, we will obtain the 
2 components acceleration of (22). The deviation of the manipulator 
from the desired path converges to zero asymptotically if K,.  Kp. 
and K; are chosen appropriately. As a result, the manipulator tracks 
the desired path. 

Fig. 3 shows the path-tracking control system. 

B. Planning of Desired Path and Initial Conditiom 

As an initial condition, it is assumed that the manipulator is moving 
with sufficient initial velocity in the direction of the path when 
path-tracking control begins. This can be achieved, for example, by 
accelerating the active joints while the passive joint is fixed and then 
commencing the path-tracking control with the passive joint released. 

The desired path should be planned geometrically so that the initial 
conditions can be realized by the active joints only. The manipulator 
has / I  - 1 DOF when the passive joint is fixed. The initial angular 
velocity of the passive joint is zero. The initial position and direction 
of the desired path are limited by these conditions. On the other hand, 
the initial velocity along the path can be controlled arbitrarily by the 
active joints. 

When path tracking is performed as part of point-to-point control. 
the passive joint should stop at an exact angle. The final direction 
of the path is also limited so that the angular velocity of the passive 
joint is zero. 

C. Velocity along Path 

In this method, the s component is accelerated/decelerated in order 
to realize the desired value of the z components. Therefore, the s 
component cannot be controlled directly. The time period necessary 
to travel along the path depends on the configuration of the path and 
the initial velocity along the path. 

From (14), 2 is constant when the manipulator moves along the 
desired path. Thus, 2 = 0 and 2 = 0 on the path. Since H J  = -HJ. 
acceleration along the path is 

s '. = - (M,H, l ) -1(M, ,~ , , .4  + h , , )  (24) 

from (20b). The initial value of .s is s o ,  and the final value is s f .  

When initial values so and S O  are given, s and S can be calculated 
by numerical integration of (24) for so 5 s 5 . s f .  Thus, the time 

~ 
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trajectory of the manipulator is obtained. The final value of S, and 
the time period to travel along the path are also evaluated. 

If the initial velocity along the path is too slow, the direction of S 
may be inverted before reaching the final point, and the manipulator 
cannot complete path tracking. Therefore, it is desirable to estimate 
the minimum initial velocity necessary to reach the final point. M ,  
and H ,  in (24) can be represented as functions of s only. On the 
path, = E,,,+. When the friction of the passive joint is negligibly 
small and b,, is composed of Coriolis, centrifugal, and gravitational 
forces, (24) can be rewritten as 

.; = f (  s ) i 2  + (/( s) (25) 

where f( .\ ) and ,y( s )  are functions of s and do not depend on initial 
velocity -io.  Note that 

(26 )  
_ _  t l s  (1.4 1 Cl(S)'L s = - . - - - . -  - 

rlt  t l s  2 t i s  . 
Equation (25) is a linear differential equation with respect to S'. The 
solution of (25) is 

Since 

the condition for i'( . \)  > 0 is 

The right side of (28) is calculated by numerical integration. If SO 
is chosen so that .4: is larger than the maximum of the integration 
value, the manipulator can reach the final point. It is clear from (28) 
that if s )  2 0 for .SO 5 s 5 s I ,  the manipulator can reach the 
final point for any 

The initial velocity necessary to reach the desired velocity at the 
final point or at a point halfway along the path can be calculated if 
the initial velocity is in excess of the minimum velocity. When (24) 
is integrated backward for SO 5 s 5 s , ~  with s and k given final 
values s , ~  and S , ) ,  the initial velocity to realize the desired velocity 
.;,I is derived. 

> 0. 

During real-time control, 

(29) 
s - .S(] x = __ 

s f - S" 

and 0 < X < 1 on the path. The value of X is monitored while the 
manipulator is tracking the path. The control terminates when X > 1. 

D. Control of u Manipulator and Multiple Passi1.e Joints 
A manipulator composed of I /  - 1 active joints and one passive 

joint is considered in Sections IV-A to IV-C. However, the proposed 
control method is easily extended to a manipulator with multiple 
passive joints. In ,/-dimensional operational space, it is necessary to 
control I /  - 1 components to keep the manipulator on the desired 
path. Therefore, 11 - 1 active joints are necessary. The manipulator is 
assumed to have I I I  > 1 passive joints. In this case, the manipulator 
is redundant in operational space. and the extended Jacobian method 
in path coordinate space is applied. The equation of motion is 

M(H)H+b(H.f i )  = U  (30) 

U = [T'  017 (31) 
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Encoder 

Motor 

I I  I v 1 

Fig. 4. 'hodegree-of-freedom manipulator. 

Fig. 5. Model of the manipulator. 

where 8 E M ( 0 )  E R("+"-')X("+"-'),b(8,i) E 
, and T E IR"-'. 7 

R n + m - l  E ]Rn+m-1 

Here, m - 1 auxiliary components, 21, . . . , 2,- 1, are added to the 
path coordinates p .  

p = [ZI,  .. ' 7  zn-1, S, 2 1 3 .  .. 9 zm-11 

= [zT, yT]T (32) 

where z E Et"-' and y E Rm. All the components of p including the 
auxiliary components should be independent, and the Jacobian matrix 
J E R("+m-l)x(n+m-l)  should be nonsingular. The equation of 
motion is partitioned as 

( 3 3 4  

(33b) 

M,H,Z + M,E,S - M,HJd + b, = r 
MpEaZ + MpEpS - M p E j i  + b, = 0. 

If matrix M p H p  E Rmxm is nonsingular, 

j ;  = (MpEp)-l(-MpEaZ+ M,EJi  - b,). (34) 

The control law is a combination of PID feedback in (22) and the 
torque computation 

T = { M ,  - M,E,(M,E,)-~M,)(E,~ - 1151 
+ba - M~E,(M~E~)-~~,. (35) 

It has almost the same form as (23). 

V. EXPERIMENTS 

A. Two-Degree-of Freedom Manipulator 
We conducted experiments using these control methods with a 

2-DOF horizontally articulated manipulator. Fig. 4 shows the ma- 
nipulator. The first axis (&) is a active joint and the second axis 
( 8 2 )  is a passive joint. The active joint is driven by a dc servo 
motor with a harmonic-drive gear. The brake of the passive joint is 
electromagnetic. Fig. 5 shows the model of the manipulator. Table I 
shows the parameters of the model. M and b in (1) are defined in 
(36). found at the bottom of the following page. 

B. Control in Cartesian Space 
The control scheme of Section II is demonstrated first. Cartesian 

space is used as operational space. The origin is at the first joint. 

TABLE I 
PARAMITERS OF THE MANIPULATOR 

ml Mass of link 1 2.0 kg 
mz Mass of link 2 1.0 kg 
L LRngth of links 1 and 2 0.3 m 
D1 Viscous friction of the actuator 2.2 N.m.s/rad 
JM Moment of inertia of the actuator 0.24 kgmz 

0.00 c 
0.0 0.5 Time [SI 1.0 

(a) 

I 
0.0 0.5 Time [SI 1.0 

(b) 

Active component: 2. 
Fig. 6. Step response of the active component. (a) Active component: y. (b) 

The coordinate transformation from joint space to operational space 
is represented as 

z = Lcos81 + Lcos(B1 + 8 2 )  

y = L sin 01 + L sin(& + &). (37) 

The Jacobian matrix is 

] (38) 
- sin81 - sin(O1 + 8 2 )  - sin(& + 8,) 
cos el + cos(el + 0 2 )  cos(el + e z )  . J = L [  

There are two cases: the case in which y is the active component and 
z is the passive component, and the case in which z is the active 
component and y is the passive component. From the state where 
the manipulator is at rest, a step change of the reference is given 
for the active component in each case. Fig. 6 shows the response. 
The initial position is z = 0.4(m), y = O(m). In Fig. 6(a), y is 
the active component and the reference is y = 0.05(m). In Fig. 
6(b) z is the active component and the reference is z = 0.45(m). 
The feedback gains are set so that the pole of the system is a triple 
root. The sampling interval is 2 ms with a 16-MHz i80386 + 80387 
CPU. (In the case of multiple degrees of freedom, (11) requires 
[n3 - 2n2 T + n ~ '  + 7nZ - 3 n r  + 2r2] multiplications and the inversion 
of a (n - T )  x ( n  - T )  matrix. It would be desirable to develop 
an efficient computation algorithm.) In the experimental result, the 
measured value of the active component (solid line) converges to 
the reference (dotted line). The error from the reference after the 
convergence is 0.14 mm in Fig. 6(a) and 0.08 mm in Fig. 6(b). Next, 
a desired trajectory is assigned for the active component. Fig. 7 shows 
the result of the trajectory tracking. The active component increases 
with constant velocity from the stationary state and decreases with 
constant velocity in the desired trajectory. An abrupt change in 
velocity occurs at the beginning of the trajectory and at the moment 
the direction changes. The measured value (solid line) follows the 
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0.35 
0.0 0.5 1.0 Time [SI 1.5 

(b) 

component: s. 
Fig. 7. Tracking of a desired trajectory. (a) Active component: y. (b) Active 

desired trajectory (dotted line) except just after those moments. The 
stick diagram (Fig. 8) represents the motion of the manipulator when 
the y component tracks a desired trajectory with constant velocity. 
The initial acceleration is done with the passive joint fixed. In Fig. 
8, the y component increases constantly. 

C. Dynamic Singularity 
In the dynamic singular point, discussed in Section 11-D, it is 

difficult to apply the proposed control method. In the case of a 2-DOF 
manipulator, the condition of dynamic singularity is M p H p  = 0. 
Fig. 9 shows the dynamic singular points of the manipulator used in 
the experiments. M p H ,  = 0 at these points. It is necessary to avoid 
these points in the control. In Fig. 9(a), y is the active component, and 
in Fig. 9(b), s is the active component. The dynamic singular points 
of Fig. 9(a) are not coincident with those of Fig. 9(b). In other words, 
where one component is not controllable, the other component is. 

D. Modeling Error 
This method depends essentially on the dynamic model of the 

manipulator. In the experiments of this paper, each parameter of the 
manipulator was calculated or determined experimentally in advance. 
However, a load at the tip of the manipulator causes a change in the 
dynamic parameters. 

The control of the active components in the proposed method has 
basically the same form as the computed torque method. In other 
words, the control of the active components is no less robust than 
the computed torque method of a conventional manipulator having 
an actuator for each joint. A high-gain feedback can suppress the 
error caused by the modeling error if the change of the model is not 
so large. 

Fig. 8. Motion of the manipulator. 

(b) 

Active component: s. 
Fig. 9. Location of dynamic singular points. (a) Active component: y. (b) 

On the other hand, the passive components absorb the modeling 
error. If the motion of the manipulator is simulated in advance, the 
trajectory of passive components deviates from the simulation. In 
path-tracking control, the velocity profile along the path changes. The 
proposed method is sensitive to the modeling error in this sense. The 
authors expect that this method may become more effective if it is 
used together with a real-time parameter identification or an adaptive 
control method. 

We also investigated the robustness of the control method experi- 
mentally. A weight (0.5 kg) is attached to the tip of the manipulator. 
The same step-response experiments as in Fig. 6 are done using 

D181 1 
L' 1 

2 
+ - I T I  L ' ~  

- n t 2 L 2  
1 
3 1 CO5 $2 
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U / 

(b) 
Fig. 10. Path tracking motion. (a) Straight line path. (b) Circular arc path. 

parameters without considering the weight. The error of the active 
components after the step response is z : 0.18 mm, y : 0.24 mm. 
The increase in the error of the active component caused by the 
modeling error is small. 

0.410 

0.400 

0.5 Time [SI 1.0 0.0 

(a) 

U.J7U . 
0.0 0.5 Time [SI 1.0 

(b) 

Fig. 11. Suppression of tracking error. (a) Straight line path. (b) Circular 
arc path. 

E. Path Tracking Control 
The path-tracking control scheme of Section IV is applied to the 

manipulator. In this manipulator, the initial direction of the desired 
path should be tangential to a circle centered at the first axis. First 
the passive joint is fixed and the active joint is accelerated. Path 
tracking begins when the brake is released. The desired path of Figs. 
1Wa) and 1 l(a) is given as a straight line. In the case of (a), the path 
coordinate space is Cartesian space. The coordinate transformation is 
(37), and the Jacobian matrix (38). The desired path (a) is represented 
as Xd = 0.4(m). The desired path of Figs. lo@) and ll(b) is given 
as a circular arc around the first axis. In the case of (b), the path 
coordinate space is a polar coordinate space whose origin is at the 
first joint. 

The Jacobian matrix is 

The desired path is T d  = 0.4(m). Fig. 10 illustrates the results of the 
path-tracking control experiments. The initial condition is yo = 0 m, 
yo = 0.7 m / s  in both cases. The results (solid lines) follow the desired 
paths (dotted lines). Trackings to the different paths are achieved from 

Fig. 12. Tracking of a composite path. 

the same initial condition. The maximum deviation is 0.29 mm in Fig. 
Iqa), and 0.72 mm in Fig. Iqb). Fig. 11 shows the response when 
the initial position is not on the path. The deviations converge to 
zero by means of the feedback control. Fig. 12 shows tracking of a 
path that includes straight and circular path segments. In this way, a 
complicated path can be composed of several simple path segments. 

VI. CONCLUSIONS 
A method to control a manipulator with passive joints in opera- 

tional space has been proposed. The equation of motion is represented 
in terms of operational coordinates. The desired acceleration can be 
generated at active components equal in number to the active joints 
by using dynamic coupling among the coordinates. This method is 
extended to path-tracking control. A path coordinate system based on 
the desired path is defined. The equation of motion of the manipulator 
is described in terms of the path coordinates. The acceleration 
of the components normal to the desired path is controlled using 
the dynamic coupling among components. This in turn keeps the 
manipulator on the desired path. The effectiveness of the method was 
verified by experiments using a 2-DOF manipulator with a passive 
joint. One of the two coordinates in Cartesian space is controlled 
to follow a desired value. The experiments also showed that the 
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path of the manipulator can be controlled precisely by use of the 
proposed method. Since this method uses closed-loop control, precise 
tracking is possible in the presence of disturbances. The path of 
the manipulator can be prescribed with this method and it may be 
combined with obstacle avoidance or other path-planning algorithms. 
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Bounds on the Largest Singular 
Value of the Manipulator Jacobian 

Inge Spangelo, J. Richard Sagli, and Olav Egeland 

Abstract-In this work, we prove that if the manipulator Jacobian is 
properly scaled, the largest singular value is bounded within a small in- 
terval close to unity. In this case, the inverse of the smallest singular value 
is a good estimate of the condition number. This is useful in singularity 
analysis. Bounds are derived for a general six-joint manipulator and for 
the ABB IRb 2000 industrial robot in a case study. 

I. INTRODUCTION 
The damped least-squares solution has been proposed for inverse 

kinematics with singularity robustness [ l ] ,  [ 2 ] .  A critical point in 
the implementation of this method is the selection of an appropriate 
damping factor that gives a good compromise between accuracy and 
feasibility of the solution. 

Nakamura and Hanafusa [ I ]  proposed computing the damping 
factor from the manipulability. Far from singularities, the damping 
factor was set to zero, while a nonzero damping factor was used 
close to singularities where the manipulability approaches zero. 
Maciejewski and Klein [ 3 ]  proposed computing the damping factor 
as a function of the smallest singular value of the Jacobian. They 
commented that the largest singular value of the Jacobian was 
approximately unity if the Jacobian was appropriately scaled. This 
observation was also made by Wampler [2] who stated that the 
Jacobian should be scaled with the maximnm reach of the arm. The 
2-norm condition number of the Jacobian is the ratio between the 
largest and the smallest singular values. If it can be proved that the 
largest singular value is close to unity, it follows that the inverse of 
the smallest singular value is a good estimate of the condition number. 

The main contribution of this paper is the proof that the largest 
singular value is bounded close to unity when the Jacobian is 
properly scaled. We derive bounds for the largest singular value of the 
manipulator Jacobian and discuss the effect of scaling the translations. 
It is shown that if the translations are properly scaled, the largest 
singular value is bounded within a small interval slightly larger than 
unity. The analysis is done for a general six-joint manipulator, and 
for the ABB IRb 2000 industrial robot. 

11. BACKGROUND 
The six-dimensional vector of joint coordinates is denoted q. The 

three-dimensional vector of end effector velocity is denoted U, while 
the three-dimensional angular velocity vector is denoted w .  The G x G 
Jacobian matrix J is defined by 

This matrix was termed the partial velocity matrix by Wampler [2]. 
If J is full rank, q can be found from ( I )  by Gaussian elimination. 
In singular configurations, a solution will only exist if ( u T ~ T ) T  E 
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