
The desire to reproduce and expand the
human senses drives innovations in sen-

sor technology. Conversely, human-interface research
aims to allow people to interact with machines as if they
were natural objects in a cybernetic, human-oriented
way. We wish to unite the two paradigms with a haptic

sensor as versatile as the sense of
touch and developed for a dual pur-
pose: to improve the robotic capa-
bility to interact with the physical
world, and to improve the human
capability to interact with the vir-
tual world for emerging applica-
tions with a heightened sense of
presence.

When force is applied to the skin’s
surface, the human sense of touch
detects not only magnitude but also
direction of force distributed over a
surface. We obtain rich tactile infor-

mation with a robustness that is difficult to emulate
through technology. The difficulty lies in obtaining vec-
tor information with both high speed and high density.
We’re developing a type of tactile sensor that uses com-
puter vision to achieve this goal. We designed a sensor,
dubbed GelForce, that acts as a practical tool in both con-
ventional and novel desktop applications using common
consumer hardware.

Surface traction field measurement
The spatial characteristics of objects in contact are

encoded in the human somatosensory system by a dense
population of subcutaneous mechanoreceptors. Neur-
al activity is triggered by deformation, and is sensitive to
direction and orientation of applied stimuli. Generally
speaking, we perceive a traction field, or a 3D force field
defined over a 2D surface. Measuring such a field is a
central concern for endowing a human-like sense of
touch to mechanical devices.

Elastostatic theory
The principles of our sensor are rooted in elasticity

theory (see Hetnarski and Ignaczak1 for an excellent dis-
course on the subject). We adopt a standard Cartesian
coordinate system in ℜ3, where the set of vectors {ei} =
{e1, e2, e3}and origin 0 represent an orthonormal basis,
with xi = x ⋅ ei giving the coordinates for points x in ℜ3

By convention, we define an elastic body B with bound-
ary ∂B as a set of elements x with a one-to-one corre-
spondence with points in physical space. We define a
deformation of B as a uniquely invertible map κ of B onto
κ(B). A vector field u(x, t) representing the displace-
ment of B to a new configuration describes the motion,
which we define as

u(x, t) = κ(x, t) − x (1)

where κ(x, t) is the point occupied by x at time t. We
associate velocity with .u and acceleration with ü. For a
time-independent equilibrium state where ü(x,t ) =
ü(x) = 0, elastostatic theory dictates admissibility con-
ditions for u(x) and a 3 × 3 stress tensor field S(x) for all
points x ∈ B. 

For practical problems with specified boundary con-
ditions in B, the remaining effort is obtaining contin-
uous and self-equilibriated solutions for [u, S] in B. An
example naturally arising in haptics is to solve for u(B)
given a surface traction field s(∂B) or a stress vector
field s(x) = S(x)n(x) for all points x ∈ ∂B, where n(x)
is the outward normal vector at x. Figure 1 shows an
example traction field on a plane with n(x) = 
(0, 0, 1).

Finding the corresponding solution [u, S] is labori-
ous in general. To simplify the problem, we assume the
elastic medium is linear, isotropic, and homogeneous.
These are common assumptions because they closely
approximate the actual properties of many engineering
materials, and an analytical solution is often intractable
without them.
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System design
The body B of our sensor, illustrated in Figure 2, is a 10

× 10 × 4-cm rectangular block of transparent silicone rub-
ber fixed by an acrylic board. We printed a collection of
colored markers, 0.6 mm in diameter, inside the elastic
body at approximately 3-mm intervals. We mounted a
color charge-coupled device (CCD) camera 15 cm below
the markers, pointed upward. To control the lighting con-
ditions, we placed an opaque black layer of identical elas-
tic material over the body’s surface and illuminated the
body’s interior with white light-emitting diodes (LEDs).

When we apply force to the topmost planar surface
∂B, the camera measures the markers’ displacement.
The rubber has low hysteresis (energy loss) and quick-
ly relaxes to its original configuration when force is
released. Thus, we can effectively treat the body as a sta-
tic infinite semispace with only a modest accuracy loss.

Elastic semispace problem
Consider the linear elastic state in a homogeneous

isotropic semispace B defined by the inequalities x1
< ∞, x2 < ∞, and 0 < x3 < ∞, subject to a traction field
s(x) on boundary ∂B = {x : x3 = 0}, with the x3 axis
defined perpendicular to the surface and directed
toward its interior. We seek an admissible solution for
[u, S] that is continuous over B. We first consider two
elemental cases of the Green’s functions for a point force
applied at origin 0. The proofs are extensive and thus
omitted for brevity (see Hetnarski and Ignaczak1 for a
rigorous discussion).

The first case is a normal point force fN = (0, 0, f3),
as shown in Figure 3a. We obtain the resulting dis-
placement vector field uN(x) for internal points x ∈ B
from the Boussinesq solution
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Two layers of 
spherical markers

Transparent
elastic body

Acrylic board

CCD
camera

2 Basic schematic of proposed sensor.

fN = (0, 0, f3)

0

x2

x3

x1

x2

x3

x1

fT = (f  , 0, 0)1

0

(a) (b)

3 Two cases of point force: (a) Boussinesq problem of normal point force; (b) Cerruti problem of tangential point
force.



(2)

where 

is the distance of x from 0.
The first elasticity constant in Equation 2 is Young’s

modulus E > 0 with units in Pascals, characterizing stiff-
ness. The elastic material we use is a stiff silicone rubber
with a high E value, so for a wide range of applied force,
any elastic displacement is small relative to the body’s
total size.

The second constant is Poisson’s ratio −1 ≤ v ≤ 1/2,
characterizing compressibility. Very compressible mate-
rials such as cork have a value close to 0, and nearly
incompressible elastomers, such as silicone, have a ratio
close to 1/2. Some synthetic materials have molecular
lattices that effectively expand under tension, granting
a negative value.

The second case is a tangential point force fT1 = (f1, 0,
0), as Figure 3b shows. Here, we obtain the resulting dis-
placement vector field uT1(x) from the Cerruti solution

(3)
where R is defined as it is in Equation 2. Clearly, we might
also find uT2 for a tangential force fT2 = (0, f2, 0) by inter-
changing x1 and x2 as well as u1 and u2 in Equation 3.

Because we assume the elastic medium is linear, given
an arbitrary point force f = (f1, f2, f3), by superposition
we can gather the solutions for uT1, uT2, and uN into
matrix form u(x) = H(x)f, where H(x) is a 3 × 3 tensor
field dependent entirely on the position x. We obtain a
traction vector field by parameterizing stress vectors s(v,
w) over a domain boundary map Ω: Ω × ℜ2 → ∂B and
compute the displacement field for any interior point x
∈ B from the formula

u(x) = ∫ΩH(x − Ω(v, w))s(v, w)dvdw (4)

To formulate the extended semispace problem’s dis-
crete solution, we define a discrete traction field Φ = [{f1,
f2, …, fn}, {ξ1, ξ2, …, ξn}] as a set of n distinct impulsive
point forces fi and their respective positions ξi ∈ ∂B,

which can be chosen freely. Equation 4 then takes the
form

For a set of m distinct sample points {x1, x2, …, xm},
where xi ∈ B, convoluting over x and ξ lets us represent
the tensor field H(x) by a constant 3m × 3n block matrix
Η such that

u(xj) =Ηi,jfi (5)
where Ηi,j = H(xj − ξi)

Because we can only measure u(x) with a camera, we
seek the inverse problem—namely, to derive a discrete
traction field f(x) given a displacement field u(x). So,
for m ≥ n, we obtain the 3n × 3m block pseudoinverse
matrix Q through a standard linear squares scheme,
such as the normal equations method:

The matrixΗ is constant, and well conditioned for
appropriate choices of x and ξ. Moreover, we can accu-
rately compute the constant Q using a Cholesky factor-
ization in a precomputation phase and then apply it
online at every frame to compute a discrete traction field
with a single matrix-vector multiplication.

Measuring displacement information
Researchers have developed a wide variety of meth-

ods for acquiring force information as a distribution.
Examples include the strain gauge and recent devices
based on piezoelectric elements  (see the “Related
Work” sidebar). To circumvent circuitry-related com-
plications for large-scale, high-density sensing, we
adopted an approach based on computer vision, which
has grown increasingly popular in robotics as the cost
and size of high-quality imaging systems has decreased.
Issues concerning linear perspective and lens distortion2

are discussed in detail elsewhere, and for now we shall
assume they are properly accounted for.

Single marker displacement. We use a fast and sim-
ple approach to measure the planar movement of the
circular markers described earlier. Figure 4 shows an
image captured by the CCD camera and sent directly to
a PC. The captured area’s size is 100 × 75 mm, so one
pixel of the 640 × 480 image roughly corresponds to a
0.15-mm square. To reduce background noise effects,
we applied a threshold to the image’s color channels to
accentuate the marker arrangement topology. This is
analogous to raising the water level to segment a hilly
landscape into a chain of islands.

To measure marker displacement within the captured
image, we decompose the image into small independent
cells. We initially detect each marker’s location through
a windowed autocorrelation technique and then create
a bounding box Mi large enough to contain the marker
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for all of its expected displacement range. Because the
rubber is stiff and the deformation is mostly reversible,
this amounts to only a few pixels in each direction, even
for a wide range of applied force. To compute the posi-
tion xi in Mi, we apply a standard discrete center of mass
calculation over all pixels p

where η(p) denotes the image intensity at pixel p in the
corresponding color channel. During a calibration stage
when no force is applied, we store the initial marker posi-
tions x. Applying force deforms the positions to κ(x), and
we compute the displacement u(x) using Equation 1.
We’ve found empirically that we can calculate the posi-
tion to a precision of less than 0.1 pixels, which corre-
sponds to approximately 15 microns in the xy-plane.

Depth information through color. Clearly, the third
component of u in Equation 1 is unobtainable because
a pixel p has only two components, corresponding to
row and column. However, elastic boundary value
problems are generally invertible as long as there are

at least as many independent equations as there are
unknown variables.3 No definitive correspondence
between markers and force vectors exists, so even
though we obtain only 2D displacement information,
we can still solve the discrete semispace problem for n
3D force vectors as long as the number of sample points
m is at least 3n/2.

Although the elastostatic theory guarantees invert-
ibility, no such assurance regarding the problem’s stabil-
ity exists when complete displacement information is
unknown. Indeed, as we show in the next section, our
method’s accuracy experiences a marked degradation
when there is no depth information in the measured dis-
placement. We therefore use two layers of markers at sep-
arate depths, interspersing them to avoid occlusion, as
Figure 5 illustrates. We distinguish the layers by color, in
this case red and blue, so by separating the color chan-

X

p p

p

p

p

i

M

M

i

i

=

( )
( )

∈

∈

∑
∑

η

η

IEEE Computer Graphics and Applications 71

Related Work
Nearly all existing force sensors belong to one of two categories.1,2

The first measures a force vector at a single point; the second measures
a distribution of forces, but only the forces’ magnitude, not their direc-
tion. Few sensors can measure force as a vector distribution, or traction
field. Most current sensors use a sensing unit in which mechanical pres-
sure causes variances in electric resistance or capacitance.1,3,4 These
sensors require complex wiring and a large sensor unit to measure
dense traction fields. This is especially problematic when the sensors
are integrated into a compact mechanism such as a robotic hand or a
desktop accessory.

An alternative force-sensing method uses optics. Optical sensors
require much less circuitry and allow dense measurement at low cost.
However, few reported optical sensors measure traction fields. Ohoka
et al. developed a sensor using an elastic sheet and a collection of pyra-
midal projections arranged in a transparent board parallel to the
sheet.5 The sensor measures a traction field by monitoring the projec-
tions, but for it to properly measure force, the projections must be
adjusted precisely.

Ferrier and Brockett proposed a shape sensor, coincidentally with a
system design similar to ours, that tracks dots on an elastic material to
compute the 3D configuration of a fingertip-shaped elastic membrane.2

Their measurement approach is robust and reportedly performed at inter-
active refresh rates for problem domains with dozens of vector elements.
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nels in an RGB stream, we obtain two planar displace-
ment distributions in each image. In Figure 5, the blue
marker layer is at x3 = 6.0 mm, and the red layer is at x3

= 8.0 mm. It follows from Equations 2 and 3 that for a
point force at the origin, the displacement of internal
points diminishes on the order of o(R-1). At small depths
the difference is substantial. This added information can
compensate for the dimension lost using a single camera.

Evaluation experiments
Measuring traction fields optically is a relatively new

concept, and there are concerns about the accuracy and
effectiveness of the method. In contrast to most con-
ventional mechanical sensors, there is no obvious input-
output relationship between the captured image and
the computed force field. We therefore assess the per-
formance of our optical traction field sensor with a few
evaluation experiments.

Force vector evaluation
We first evaluated the effectiveness of the two layers

of markers and the influence of distance between the
blue and red layers using a simulated model of the sen-
sor with the same specifications as the actual system.
We chose a discrete computed traction field Φ as an n =
24 × 24 square grid of force vectors centered at the ori-
gin. We then simulated an applied discrete traction field
Φ̂ on the surface with 100 force vectors arranged in a
square given by

with units properly scaled to the image size. 
We investigated the effect of the two layers by com-

paring Φ and Φ̂. Iterating the simulation let us system-
atically change the given distance between the two

layers. We simulated m = 576 red + 576 blue internal
markers with positions Ψ obtained from an actual CCD
camera image. Given applied traction field Φ̂, we used
Equation 5 to calculate the theoretical displacement vec-
tor field u(Ψ) for the markers and mapped it to account
for linear perspective. We multiplied the result by the
2m × 3n pseudoinverse matrix Q to obtain Φ.

Figure 6 shows the mean difference between the indi-
vidual vectors fi in Φ and f̂i in ̂Φ for each component. On
the horizontal axis, from left to right, the mean values are
for only the blue layer, the blue and red marker layers at
the same depth, then each case with an interlayer dis-
tance between 1 and 6 mm, then 8 and 13 mm. Having
the blue and red layers located at the same depth is equiv-
alent to doubling the density of sampling points at only
one layer. Because we scale the computed field Φ arbi-
trarily, results are normalized with respect to the absolute
error obtained by a single layer of blue markers. Although
the average of the difference is almost the same in the
first two cases, as the layers separate, the mean difference
decreases. However, this trend bottoms out, and the mean
difference increases with additional separation. This con-
clusion suggests that the proposed method is most accu-
rate when the difference between the two marker layers
is 2 or 3 mm, the distance adopted in our prototype.

We then evaluated the resolution of force magnitude
and direction. We applied an actual traction field using
a probe with a 5-mm diameter hemispherical contact
site. Summating each force vector in the computed Φ
gives us a total computed force f. By comparing f with
the total applied force f̂ measured by a separate 6-axis
force sensor controlled by an xyz-stage, we examine the
resolution and linearity of the measurement Φ.

First, we investigated the magnitude of the comput-
ed force f. We increased the applied normal force ̂f from
0 to 750 gram force (gf) by 50 gf increments and record-
ed the computed force over 10 trials. Figure 7a shows
the result. The straight plot indicates that the sensor can
sufficiently measure the force linearly with a magnitude
resolution of about 30 gf. We expect that using a less
stiff material might further improve the result.

Next, we estimated the force’s angle resolution. Using
the same hemispherical probe, we fixed the magnitude
of the applied force f̂ at 400 gf and applied the force at
a variable angle with respect to the surface normal,
changing from 0 to 45 by 5-degree increments. The
probe’s base plane remains parallel to the xy-plane. Fig-
ure 7b shows the result. As the figure shows, the pro-
posed force sensor measures the angle of force precisely
and linearly. The graph’s data spread shows that the
measured force’s angle resolution is about 5 degrees.

The proposed force sensor calculates force using a
pseudoinverse matrix, so the computed result at each
point includes an error that is distributed around its
neighbors. We investigated this error’s effects on spatial
resolution. For simplicity, for each force vector we con-
sidered only the normal component fN and tangential
component fT. The evaluation used an applied traction
field  from force applied at a certain point on the surface.

However, because the sampling interval isn’t fine
enough to estimate the distributed error, we adopted
the following procedure. We selected two adjacent mea-
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surement points, (fi, xi) and (fj, xj), from the computed
traction field Φ, subdivided the distance between them
into n points, and applied a given perpendicular force
f̂N at each point. Then, we computed force vectors fN at
each point, regarding each point as the origin. We
repeated this procedure as we increased the density of
sampling points in Φ and then derived the spatial reso-
lution of Φ from the obtained force distribution’s width.

Figure 8 shows the result, with the horizontal axis
representing the distance from each origin, and the ver-
tical axis representing the normal component of the
measured force vector f. We normalize the vertical axis
value using the maximum value among the acquired
data. The magnitude of normal applied force ̂fN is fixed
at 200 gf and the adjacent measurement points are at
the center of the area in which we acquire force distrib-
ution. The actual measurement interval is 2.2 mm, and
we subdivide adjacent points into 0.37-mm intervals.
Half of the width, in effect the spatial resolution of forces
in Φ, is about 4 mm.

Performance evaluation
The core motivation of GelForce is to measure a large-

scale and high-density surface traction field in real time,
so a few words regarding performance are in order.

Table 1 summarizes the prototype’s specifications and
execution times.

Applications
As computing hardware improves, many applications

are emerging that induce a heightened sense of pres-
ence for the user. Accordingly, we can expect an
increased demand for input and control devices with
high bandwidth and rich geometrical structure.

Interactive digital art
Because the GelForce sensor measures dense traction

fields in real time, it shows promise for novel interactive
digital artwork. To assess the computed field’s geomet-
rical structure, we implemented several visualizations
in an application called GelVis using various graphics
hardware acceleration techniques to visualize vector
fields, contour plots, and spline surfaces. Applying force
to the surface let us easily achieve sophisticated visual
effects, such as those in Figure 9.

We confirmed many of the force vector distribution
interface’s novel capabilities through visualization. For
example, when we slid a finger along the sensor’s sur-
face, the force vector field followed the movement
smoothly, with the distribution’s leading end correctly
pointing parallel to the surface. When we applied torque
to the sensor’s surface, the traction field indicated a curl-
ing distribution. Pressing on the elastic body with vari-
ous intensities, ranging from a gentle tap to a
full-strength press, causes the displayed arrows to scale
correctly along the complete range of applied force.

Universal computer interface
The developed sensor is inexpensive to manufacture

and easy to use. With the continual improvement of CPU
and GPU technology, novel uses for high-bandwidth
traction field sensing in image processing, animation,
virtual reality, music, and computer entertainment will
soon become mainstream.

Most conventional interfaces, such as the keyboard
or pointer device, rely on applied force sensors. Force
input devices can be classified by measured value and
measured region dimensions. For example, a standard
joystick measures a 2D force vector at a 0D point, and a
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pressure-pad3 measures 1D force magnitude over a 2D
surface. Generally speaking, sensors with higher dimen-
sions of either measured value or region are more uni-
versal. That is, any device that can measure a 3D vector
can obviously measure a 2D vector or a 1D scalar, and
likewise for measurement region.

As such, we wish to exploit the universality of trac-
tion fields to support existing applications as well. Stan-
dard techniques, such as spline interpolation and flow

analysis,4 are useful for accurately extracting critical
points, such as concentrated forces or vortices, that can
be used for familiar tasks such as point-based control,
affine transformations, and text input.

Robotic sense of touch
A traction field sensor can endow a robotic fingertip

with a lifelike sense of touch. Simple tasks, such as pick-
ing up an egg, depend on feeling the weight of an object
not only by muscle contraction but also by force parallel
to the skin. Adjusting the proportion of perpendicular
and parallel force lets humans grasp fragile objects safe-
ly. Similarly, to operate dexterously, robots must sense
both the grasping and the friction force on the fingertip.
With appropriate Green’s functions, we can use the prin-
ciples behind the GelForce sensor to measure traction
fields for an arbitrary shape, such as a fingertip, so it can
easily be mounted on a robot hand. Figure 10 shows the
robotic fingertip in development at our laboratory.

Conclusion
It wouldn’t be an exaggeration to say that every sci-

entific technology is based on sensors. For example,
audio recording couldn’t exist without the measurement
of sound, and television broadcasts would be impossible
without catching radio waves as picture signals. Like the
human tactile sense, the technology of the developed
sensor allows the real-time measurement of complete
information about force—that is, direction, magnitude,
and distribution. This versatile ability plays a crucial role
in our daily lives, even our own identities in space, and
we look forward to finding use for high-bandwidth trac-
tion sensation in ways yet to be discovered. ■
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9 GelVis snapshots: (a) deformed surface with multiple contact points, 
(b) overhead projection onto sensor surface, (c) contour plot of measured
force magnitude, and (d) complex traction field with a curved object.

(a) (b)

(c) (d)

Table 1. Prototype system specifications and execution times.

Feature Description

Size 10 × 10 × 15 cm
Elastic body Silicone rubber, 10 × 10 × 4 cm 

(Young’s modulus E ≈ 1.8 × 104 Pa, Poisson’s ratio n ≈ 0.49)
Markers Two 24 × 24 grids at 3-mm intervals 

Depth: (blue) 6 mm, (red) 8 mm
Traction field 24 × 24 regular grid of 3D vectors
Resolution Magnitude: 30 gf

Direction: 5 degrees
Spatial: 4 mm

Camera Point Grey Research Streaming Dragonfly
(640 × 480 RGB, 30 frames per second)

CPU Intel Pentium 4 HT, 2.6 GHz
Implementation Intel C/C++ Compiler 8.0

Intel Math Kernel Library 6.1
Precomputation Normal equations to compute 1,728 × 2,304 pseudoinverse: 8.5 seconds
Time per frame Marker tracking: 1.07 ms

Traction computation: 11.5 ms
Frame rate restricted by camera
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10 Traction
field measure-
ment on a
robotic finger:
(a) basic system
schematic, 
(b) prototype
with mounted
camera, and
(c) finger-
shaped elastic
body with
internal mark-
ers.


